Two-Dimensional Nanomaterials Based Biosensors

  • Chapter
  • First Online:
Progress in Nanoscale and Low-Dimensional Materials and Devices

Abstract

Graphene became the first 2D (two-dimensional) nanostructure which was discovered in 2004. After the synthesis of graphene revealed its unique properties, researchers set out to discover new 2D nanomaterials: Phosphorene is one of the new 2D nanomaterials. It can be described as a counterpart of graphene. Like graphene, it has excellent biocompatibility and unique properties making phosphorene very suitable for biosensing applications. Two forms of phosphorene, which are called as BP (Black Phosphorene) and BuP (Blue Phosphorene), have been demonstrated by both experimental and theoretical studies. BuP possesses a buckled honeycomb lattice, whereas BP exhibits a puckered non-planar structure. There is now increasing interest in the unique biological and medical properties of these 2D materials. Our main focus is on the interaction between DNA/RNA nucleobases (NB) and monolayer graphene/phosphorene. Better understanding of the interaction between DNA/RNA nucleobases with these 2D surfaces will provide a better understanding of the same interaction mechanisms for amino acids, peptides and proteins. According to both experimental and theoretical studies, the interactions of biomolecules and 2D materials are long-ranged and very weak. Considering the nature of this interaction, it is very important to focus on vdW (Van der Waals) interactions. The application of some external mechanisms, such as charging, can modify the strength of binding. In this work, the binding mechanism of DNA/RNA nucleobases on 2D monolayer graphene/phosphorene has been studied using the DFT (Density Functional Theory) formalism including vdW-DF2 scheme. In this chapter, we report on the trends of the binding energies and on the effects of the charging on the structural and electronic properties of the graphene/phosphorene nucleobases systems. The results presented in this study will be useful for advances in biosensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013)

    Article  CAS  Google Scholar 

  2. M. Naguib, Y. Gogotsi, Acc. Chem. Res. 48, 128 (2015)

    Article  CAS  Google Scholar 

  3. A. Rochefort, J.D. Wuest, Langmuir 25, 210 (2009)

    Article  CAS  Google Scholar 

  4. Y.H. Lu, W. Chen, Y.P. Feng, P.M. He, J. Phys. Chem. B 113, 2 (2009)

    Article  CAS  Google Scholar 

  5. T. Zhang, Q. Xue, M. Shan, Z. Jiao, X. Zhou, C. Ling, Z. Yan, The Journal of Physical Chemistry C 116, 19918 (2012)

    Article  CAS  Google Scholar 

  6. Y. Ding, X. Wang, L. **e, X. Yao, W. Xu, Chem. Commun. 54, 9259 (2018)

    Article  CAS  Google Scholar 

  7. Y. Yang, A.M. Asiri, Z. Tang, D. Du, Y. Lin, Mater. Today 16, 365 (2013)

    Article  CAS  Google Scholar 

  8. L. Kou, T. Frauenheim, C. Chen, The Journal of Physical Chemistry Letters 5, 2675 (2014)

    Article  CAS  Google Scholar 

  9. H. Vovusha, B. Sanyal, RSC Adv. 5, 67427 (2015)

    Article  CAS  Google Scholar 

  10. Y. Yin, J. Cervenka, N.V. Medhekar, The Journal of Physical Chemistry Letters 8, 3087 (2017)

    Article  CAS  Google Scholar 

  11. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, ACS Nano 8, 4033 (2014)

    Article  CAS  Google Scholar 

  12. J. **e, M.S. Si, D.Z. Yang, Z.Y. Zhang, D.S. Xue, J. Appl. Phys. 116, 073704 (2014)

    Google Scholar 

  13. H.H. Gürel, B. Salmankurt, Mater. Res. Express 4, 065401 (2017)

    Google Scholar 

  14. X. Li, Y. Yin, X. Chang, Y. **ong, L. Zhu, W. **ng, Q. Xue, Chem. Eng. J. 387, 123403 (2020)

    Google Scholar 

  15. X. Tan, L. Kou, S.C. Smith, Chemsuschem 8, 2987 (2015)

    Article  CAS  Google Scholar 

  16. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Google Scholar 

  18. S. Grimme, Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  19. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  CAS  Google Scholar 

  20. T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  CAS  Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  22. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  CAS  Google Scholar 

  23. J.H. Lee, Y.K. Choi, H.J. Kim, R.H. Scheicher, J.H. Cho, J. Phys. Chem. C 117, 13435 (2013)

    Article  CAS  Google Scholar 

  24. T. Gorkan, Y. Kadioglu, E. Akturk, S. Ciraci, Phys. Chem. Chem. Phys. 22, 26552 (2020)

    Article  CAS  Google Scholar 

  25. Y. Kadioglu et al., J. Phys. Chem. C 123, 23691 (2019)

    Article  CAS  Google Scholar 

  26. D. Cortés-Arriagada, J. Phys. Chem. C 122, 4870 (2018)

    Article  Google Scholar 

  27. D. Le, A. Kara, E. Schröder, P. Hyldgaard, T.S. Rahman, J. Phy. Condens. Matter 24, 424210 (2012)

    Google Scholar 

  28. S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, S.P. Karna, Phys. Rev. B 76, 033401 (2007)

    Google Scholar 

  29. R.L. Kumawat, B. Pathak, J. Phys. Chem. C 123, 22377 (2019)

    Article  CAS  Google Scholar 

  30. T. Hussain, H. Vovusha, T. Kaewmaraya, V. Amornkitbamrung, R. Ahuja, Sens. Actuators, B Chem. 255, 2713 (2018)

    Article  CAS  Google Scholar 

  31. S. Cui, H. Pu, S.A. Wells, Z. Wen, S. Mao, J. Chang et al., Nat. Commun. 6, 1 (2015)

    CAS  Google Scholar 

  32. Y. **g, et al, Nanotechnology 26, 095201 (2015)

    Google Scholar 

  33. R.L. Kumawat, P. Garg, S. Kumar, B. Pathak, ACS Appl. Mater. Interfaces 11, 219 (2018)

    Article  Google Scholar 

  34. M. Topsakal, H.H. Gürel, S. Ciraci, J. Phys. Chem. C 117, 5943 (2013)

    Google Scholar 

  35. H.H. Gürel, S. Ciraci, J. Phys. Condens. Matter 25, 435304 (2013)

    Google Scholar 

  36. R. Poloni, A.S. Miguel, M. Fernandez-Serra, J. Phys. Condens. Matter 24, 095501 (2012)

    Google Scholar 

  37. C. Attaccalite, L.Wirtz, M. Lazzeri, F. Mauri, A. Rubio, Nano Lett. 10, 1172 (2010)

    Google Scholar 

  38. H.H. Gürel, V.O. Özçelik, S. Ciraci, J. Phys. Condens. Matter 25, 305007 (2013)

    Google Scholar 

  39. H.H. Gürel, S. Ciraci, J. Phys. Condens. Matter 25, 275302 (2013)

    Google Scholar 

  40. H.H. Gürel, M. Topsakal, S. Ciraci Low-Dimensional and Nanostructured Materials and Devices (pp. 261–90). Springer, Berlin (2016)

    Google Scholar 

Download references

Acknowledgements

H.H. Gurel acknowledges The Scientific and Technological Research Council of Turkey (TÜBİTAK, Grant Number: MFAG-114F453), for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikmet Hakan Gürel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salmankurt, B., Gürel, H.H. (2022). Two-Dimensional Nanomaterials Based Biosensors. In: Ünlü, H., Horing, N.J.M. (eds) Progress in Nanoscale and Low-Dimensional Materials and Devices. Topics in Applied Physics, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-93460-6_27

Download citation

Publish with us

Policies and ethics

Navigation