Graphene Oxide and Nucleic Acids

  • Living reference work entry
  • First Online:
Handbook of Chemical Biology of Nucleic Acids

Abstract

In recent years, graphene and its oxidized form, graphene oxide (GO), have emerged as a versatile material for various biomedical applications such as biosensing through graphene-quenched fluorescence, nucleic acid adsorption, gene/drug delivery, and photothermal therapeutics. These applications of GO are attributed to properties such as large surface area, excellent aqueous dispersibility, biocompatibility, acceptor of fluorescence resonance energy transfer (FRET) to quench dye fluorescence, and facile modification with functional groups. Importantly, GO exhibits preferential adsorption of single-stranded nucleic acid through π–π stacking interaction and hydrogen bonding between nucleobases and GO surfaces, whereas dsDNA adsorbs on GO with low affinity due to its stiffness and low diffusivity. Several biosensors for detection of a wide range of biomolecules have been developed utilizing GO as fluorescently labeled probes are almost completely quenched upon adsorption on GO’s surface. In the presence of complementary DNA, ds DNA is formed, and fluorescent probe is desorbed from the GO, resulting in florescence restoration which forms the basis for GO-based biosensor platforms. Understanding the fundamental mechanism of interaction between nucleic acid and the GO surface is important for the development of GO-based FRET sensors, gene/drug delivery systems, and biotherapeutics. This chapter provides theoretical considerations of DNA adsorption/desorption and fluorescence quenching of fluorescently labeled DNA by GO. It also summarizes the latest developments in the field of GO and functionalized GO with main applications in vitro and in vivo, including nucleic acid amplification, fluorescent nucleic acid biosensors, gene/drug delivery, and photothermal therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Baek A, Baek YM, Kim HM et al (2018) Polyethylene glycol-engrafted graphene oxide as biocompatible materials for peptide nucleic acid delivery into cells. Bioconjug Chem 29(2):528–537

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhao J, Jiang J et al (2012) A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform. Talanta 15(101):357–361

    Article  Google Scholar 

  • Cheng L, Wang C, Feng L et al (2014) Functional nanomaterials for phototherapies of cancer. Chem Rev 114(21):10869–10939

    Article  PubMed  CAS  Google Scholar 

  • Dong Z, Zhang F, Wang D et al (2015) Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J Solid State Chem 224:88–93

    Article  CAS  Google Scholar 

  • Dovbeshko GI, Repnytska OP, Obraztsova ED et al (2003) DNA interaction with single-walled carbon nanotubes: a SEIRA study. Chem Phys Lett 372(3–4):432–437

    Article  CAS  Google Scholar 

  • Estrela P, Bhalla N, Jolly P et al (2016) Introduction to biosensors. Essays Biochem 60(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  PubMed  CAS  Google Scholar 

  • He S, Song B, Li D et al (2010) A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv Funct Mater 20(3):453–459

    Article  CAS  Google Scholar 

  • Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287(5454):820–825

    Article  PubMed  CAS  Google Scholar 

  • Hong C, Baek A, Hah SS et al (2016) Fluorometric detection of microRNA using isothermal gene amplification and graphene oxide. Anal Chem 88(6):2999–3003

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Huang Y, Sun S et al (2012) Visible light driven photodynamic anticancer activity of graphene oxide/TiO2 hybrid. Carbon 50(3):994–1004

    Article  CAS  Google Scholar 

  • Huang PJJ, Liu J (2012) DNA-length-dependent fluorescence signaling on graphene oxide surface. Small 8(7):977–983

    Article  PubMed  CAS  Google Scholar 

  • Huang PJJ, Kempaiah R, Liu J (2011) Synergistic pH effect for reversible shuttling aptamer-based biosensors between graphene oxide and target molecules. J Mater Chem 21(25):8991–8993

    Article  CAS  Google Scholar 

  • Jeong S, Kim DM, An SY et al (2018) Fluorometric detection of influenza viral RNA using graphene oxide. Anal Biochem 561–562:66–69

    Article  PubMed  Google Scholar 

  • Jia H, Zhang A, Yang Y, Cui Y et al (2021) A graphene oxide coated tapered microfiber acting as a super-sensor for rapid detection of SARS-CoV-2. Lab Chip 21(12):2398–2406

    Article  PubMed  CAS  Google Scholar 

  • Jiang BP, Hu LF, Wang DJ et al (2014) Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method. J Mater Chem B 2(41):7141–7148

    Article  PubMed  CAS  Google Scholar 

  • Jung HS, Kong WH, Sung DK et al (2014) Nanographene oxide-hyaluronic acid conjugate for photothermal ablation therapy of skin cancer. ACS Nano 8(1):260–268

    Article  CAS  Google Scholar 

  • Kalendar R, Cantera JL, White H et al (2019) Assessment of eight nucleic acid amplification technologies for potential use to detect infectious agents in low-resource settings. PLoS One 14(4):1–14

    Google Scholar 

  • Kim J, Cote LJ, Kim F et al (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267

    Article  PubMed  CAS  Google Scholar 

  • Kim HR, Baek A, Lee IJ et al (2016) Facilitation of polymerase chain reaction with poly(ethylene glycol)-engrafted graphene oxide analogous to a single-stranded-DNA binding protein. ACS Appl Mater Interfaces 8(49):33521–33528

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Kim M, Lee KK et al (2020) Effects of graphene oxide-gold nanoparticles nanocomposite on highly sensitive foot-and-mouth disease virus detection. Nano 10(10, 1921):1–11

    Google Scholar 

  • Konios D, Stylianakis MM, Stratakis E et al (2014) Dispersion behaviour of graphene oxide and reduced graphene oxide. J Colloid Interface Sci 430:108–112

    Article  PubMed  CAS  Google Scholar 

  • Li S, Aphale AN, Macwan IG et al (2012) Graphene oxide as a quencher for fluorescent assay of amino acids, peptides, and proteins. ACS Appl Mater Interfaces 4(12):7069–7075

    Article  PubMed  CAS  Google Scholar 

  • Li B, Hou W, Sun J et al (2015) Tunable functionalization of graphene oxide sheets through surface-initiated cationic polymerization. Macromolecules 48(4):994–1001

    Article  CAS  Google Scholar 

  • Lin Q, Ye X, Huang Z et al (2019) Graphene oxide-based suppression of nonspecificity in loop-mediated isothermal amplification enabling the sensitive detection of cyclooxygenase-2 mRNA in colorectal cancer. Anal Chem 91(24):15694–15702

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Robinson JT, Sun XM et al (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu F, Choi JY, Seo TS (2010) Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer. Biosens Bioelectron 25(10):2361–2365

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Tian J, Wang L et al (2011) Self-assembled graphene platelet–glucose oxidase nanostructures for glucose biosensing. Biosens Bioelectron 26(11):4491–4496

    Article  PubMed  CAS  Google Scholar 

  • Liu H, ** P, **e G et al (2012) Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116(5):3334–3341

    Article  CAS  Google Scholar 

  • Liu M, Song JP, Shuang SM et al (2014) A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 8(6):5564–5573

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Salgado S, Maheshwari V et al (2016) DNA adsorbed on graphene and graphene oxide: fundamental interactions, desorption and applications. Curr Opin Colloid Interface Sci 26:41–49

    Article  CAS  Google Scholar 

  • Loh KP, Bao Q, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2(12):1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787

    Article  CAS  Google Scholar 

  • Lu C, Huang PJJ, Liu B et al (2016) Comparison of graphene oxide and reduced graphene oxide for DNA adsorption and sensing. Langmuir 32(41):10776–10783

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Chen X, Zhou G et al (2012) Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme. Chem Commun 48(8):1126–1128

    Article  CAS  Google Scholar 

  • Manohar S, Mantz AR, Bancroft KE et al (2008) Peeling single-stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy. Nano Lett 8(12):4365–4372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng C, Zhi X, Li C et al (2016) Graphene oxides decorated with carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano 10(2):2203–2213

    Article  PubMed  CAS  Google Scholar 

  • Narayan R, Kim SO (2015) Surfactant mediated liquid phase exfoliation of graphene. Nano Convergence 2(20):1–19

    Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  PubMed  CAS  Google Scholar 

  • Olabi AG, Abdelkareem MA, Wilberforce T et al (2021) Application of graphene in energy storage device - a review. Renew Sust Energ Rev 135(110026):1–20

    Google Scholar 

  • Ou X, Zhan S, Sun C et al (2019) Simultaneous detection of telomerase and miRNA with graphene oxide-based fluorescent aptasensor in living cells and tissue samples. Biosens Bioelectron 124:199–204

    Article  PubMed  Google Scholar 

  • Park JS, Goo NI, Kim DE (2014) Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir 30(42):12587–12595

    Article  PubMed  CAS  Google Scholar 

  • Peña-Bahamonde J, Nguyen HN, Fanourakis SK et al (2018) Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol 16(1):1–17

    Article  Google Scholar 

  • Piao Y, Liu F, Seo TS (2011) The photoluminescent graphene oxide serves as an acceptor rather than a donor in the fluorescence resonance energy transfer pair of Cy3.5–graphene oxide. Chem Commun 47:12159–12151

    Article  Google Scholar 

  • Povedailo VA, Ronishenko BV, Stepuro VI et al (2018) Fluorescence quenching of dyes by graphene oxide. J Appl Spectrosc 85(4):605–610

    Article  CAS  Google Scholar 

  • Prattis I, Hui E, Gubeljak P et al (2021) Graphene for biosensing applications in point-of-care testing. Trends Biotechnol 39(10):1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Priyadarsini S, Mohanty S, Mukherjee S et al (2018) Graphene and graphene oxide as nanomaterials for medicine and biology application. J Nanostruct Chem 8(2):123–137

    Article  CAS  Google Scholar 

  • Roh K, Kim DM, Lee EH et al (2015) A simple PCR-based fluorometric system for detection of mutant fusion DNAs using a quencher-free fluorescent DNA probe and graphene oxide. Chem Commun 51(32):6960–6963

    Article  CAS  Google Scholar 

  • Sahoo JK, Paikra SK, Baliarsingh A et al (2020) Surface functionalization of graphene oxide using amino silane magnetic nanocomposite for chromium (VI) removal and bacterial treatment. Nano Express 1(010062):1–25

    Google Scholar 

  • Seo G, Lee G, Kim MJ et al (2020) Rapid detection of covid-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 14(4):5135–5142

    Article  PubMed  CAS  Google Scholar 

  • Sinha A, Cha BG, Choi Y et al (2017) Carbohydrate-functionalized rGO as an effective cancer vaccine for stimulating antigen-specific cytotoxic T cells and inhibiting tumor growth. Chem Mater 29(16):6883–6892

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  • Su S, Wang J, Wei J et al (2015) Efficient photothermal therapy of brain cancer through porphyrin functionalized graphene oxide. New J Chem 39(7):5743–5749

    Article  CAS  Google Scholar 

  • Swathi RS, Sebastian KL (2009) Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J Chem Phys 130(8, 086101):1–3

    Google Scholar 

  • Syama S, Mohanan PV (2019) Comprehensive application of graphene: emphasis on biomedical concerns. Nano Micro Lett 11(1):1–31

    Article  Google Scholar 

  • Tan E, Erwin B, Dames S et al (2008) Specific versus nonspecific isothermal DNA amplification through thermophilic polymerase and nicking enzyme activities. Biochemistry 47(38):9987–9999

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Chang H, Liu Y et al (2012) Duplex DNA/graphene oxide biointerface: from fundamental understanding to specific enzymatic effects. Adv Funct Mater 22(14):3083–3088

    Article  CAS  Google Scholar 

  • Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(5):577–644

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zou B, Rui J et al (2014) Exponential amplification of DNA with very low background using graphene oxide and single-stranded binding protein to suppress non-specific amplification. Microchim Acta 182(5):095–1101

    Google Scholar 

  • Wang Y, Wang F, Wang H et al (2017) Graphene oxide enhances the specificity of the polymerase chain reaction by modifying primer-template matching. Sci Rep 7(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jiao W, Wang Y et al (2020) Graphene oxide and self-avoiding molecular recognition systems-assisted recombinase polymerase amplification coupled with lateral flow bioassay for nucleic acid detection. Microchim Acta 187(12):1–11

    Article  Google Scholar 

  • Weaver CL, LaRosa JM, Luo XL et al (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8(2):1834–1843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu M, Kempaiah R, Huang PJJ et al (2011) Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27(6):2731–2738

    Article  PubMed  CAS  Google Scholar 

  • Wu X, **ng Y, Zeng K et al (2018) Study of fluorescence quenching ability of graphene oxide with a layer of rigid and tunable silica spacer. Langmuir 34(2):603–611

    Article  PubMed  CAS  Google Scholar 

  • Yan M, Liu Y, Zhu X et al (2018) Nanoscale reduced graphene oxide-mediated photothermal therapy together with IDO inhibition and PD-L1 blockade synergistically promote antitumor immunity. ACS Appl Mater Interfaces 11(2):1876–1885

    Article  Google Scholar 

  • Yang K, Zhang S, Zhang G et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10(9):3318–3323

    Google Scholar 

  • Yang L, Tseng Y-T, Suo G et al (2015) Photothermal therapeutic response of cancer cells to aptamer–gold nanoparticle-hybridized graphene oxide under NIR illumination. ACS Appl. Mater. Interfaces 7(9):5097–5106

    Google Scholar 

  • Yang K, Wan J, Zhang S et al (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33(7):2206–2214

    Google Scholar 

  • Zhang W, Guo Z, Huang D et al (2011) Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 32(33): 8555–8561

    Google Scholar 

  • Zhang P, Wang Y, Leng F et al (2013) Highly selective and sensitive detection of coralyne based on the binding chemistry of aptamer and graphene oxide. Talanta 112:117–122

    Google Scholar 

  • Zhang L, Zhou Q, Song W et al (2017) Dual-functionalized graphene oxide based siRNA delivery system for implant surface biomodification with enhanced osteogenesis. ACS Appl. Mater. Interfaces 9(40):34722–34735

    Google Scholar 

  • Zhou W, Zhuang W, Ge L et al (2019) Surface functionalization of graphene oxide by amino acids for Thermomyces lanuginosus lipase adsorption. J. Colloid Interface Sci. 15(546):211–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Eun Kim .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chauhan, K., Cho, E., Kim, DE. (2022). Graphene Oxide and Nucleic Acids. In: Sugimoto, N. (eds) Handbook of Chemical Biology of Nucleic Acids. Springer, Singapore. https://doi.org/10.1007/978-981-16-1313-5_62-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1313-5_62-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1313-5

  • Online ISBN: 978-981-16-1313-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation