Engineering Direct Interspecies Electron Transfer for Enhanced Methanogenic Performance

  • Chapter
  • First Online:
Renewable Energy Technologies for Energy Efficient Sustainable Development

Abstract

Producing biogas from organic waste streams through anaerobic digestion (AD) is a well-established bioenergy technology. Efficient electron transfer between syntrophic bacteria and methanogens is critical for balancing acidogenesis and methanogenesis, which is necessary for stable digester operation. The recently discovered direct interspecies electron transfer (DIET) links syntrophic partners via cell-to-cell electrical connections without using diffusive electron carriers such as H2. Promoting DIET by adding conductive materials has been suggested as a possible method to accelerate syntrophic degradation of organic compounds, and many studies have demonstrated the enhancement of methanogenesis by the addition of conductive materials. Although further research is needed for practical applications, accumulated evidence indicates that engineering DIET is a promising strategy to enhance the performance and stability of AD processes. A few recent studies have also demonstrated the scale-up potential of DIET-aided AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari RY, Malvankar NS, Tuominen MT, Lovley DR (2016) Conductivity of individual Geobacter pili. RSC Adv 6:8354–8357

    Article  CAS  Google Scholar 

  • Ambuchi JJ, Zhang Z, Shan L, Liang D, Zhang P, Feng Y (2017) Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment. Water Res 117:87–94

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Kim J, Cho K, Bae H, Lee C (2015) The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol 99:10355–10366

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Kim J, Lee C (2016) A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – enhancement in process performance and stability. Bioresour Technol 222:344–354

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Jung H, Kim J, Lee C (2017) A long-term study on the effect of magnetite supplementation in continuous anaerobic digestion of dairy effluent – magnetic separation and recycling of magnetite. Bioresour Technol 241:830–840

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Kim J, Kim J, Lee C (2018) Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 11:107

    Article  Google Scholar 

  • Baek G, Kim J, Lee C (2019) A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renew Sust Energ Rev 113:109282

    Article  CAS  Google Scholar 

  • Baek G, Kim J, Kim J, Lee C (2020) Individual and combined effects of magnetite addition and external voltage application on anaerobic digestion of dairy wastewater. Bioresour Technol 297:122443

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Saikaly PE, Logan BE (2021) Addition of a carbon fiber brush improves anaerobic digestion compared to external voltage application. Water Res 188:116575

    Article  CAS  PubMed  Google Scholar 

  • Barua S, Dhar BR (2017) Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 244:698–707

    Article  CAS  PubMed  Google Scholar 

  • Barua S, Zakaria BS, Dhar BR (2018) Enhanced methanogenic co-degradation of propionate and butyrate by anaerobic microbiome enriched on conductive carbon fibers. Bioresour Technol 266:259–266

    Article  CAS  PubMed  Google Scholar 

  • Boone DR, Castenholz RW (eds) (2001) Bergey's manual of systematic bacteriology: the archaea and the deeply branching and phototrophic bacteria, vol 1, 2nd edn. Springer, New York

    Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of km for H2 or formate uptake. Appl Environ Microbiol 55:1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capson-Tojo G, Moscoviz R, Ruiz D, Santa-Catalina G, Trably E, Rouez M, Crest M, Steyer J-P, Bernet N, Delgenès J-P, Escudié R (2018) Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresour Technol 260:157–168

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rotaru A-E, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR (2014a) Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol 173:82–86

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rotaru A-E, Shrestha PM, Malvankar NS, Liu F, Fan W, Nevin KP, Lovley DR (2014b) Promoting interspecies electron transfer with biochar. Sci Rep 4:5019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Liu C, Liu X, Sun D, Li P, Qiu B, Dang Y, Karpinski NA, Smith JA, Holmes DE (2020) Magnetite enhances anaerobic digestion of high salinity organic wastewater. Environ Res 189:109884

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Francis L, Call DF (2018) Amending anaerobic bioreactors with pyrogenic carbonaceous materials: the influence of material properties on methane generation. Environ Sci: Water Res Technol 4:1794–1806

    CAS  Google Scholar 

  • Chowdhury B, Lin L, Dhar BR, Islam MN, McCartney D, Kumar A (2019) Enhanced biomethane recovery from fat, oil, and grease through co-digestion with food waste and addition of conductive materials. Chemosphere 236:124362

    Article  CAS  PubMed  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Wiley, Weinheim

    Book  Google Scholar 

  • Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48:7536–7543

    Article  CAS  PubMed  Google Scholar 

  • Dang Y, Holmes DE, Zhao Z, Woodard TL, Zhang Y, Sun D, Wang L-Y, Nevin KP, Lovley DR (2016) Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour Technol 220:516–522

    Article  CAS  PubMed  Google Scholar 

  • Dang Y, Sun D, Woodard TL, Wang L-Y, Nevin KP, Holmes DE (2017) Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials. Bioresour Technol 238:30–38

    Article  CAS  PubMed  Google Scholar 

  • de Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375

    Article  PubMed  Google Scholar 

  • Dubé C-D, Guiot SR (2015) Direct interspecies electron transfer in anaerobic digestion: a review. In: Gubitz G, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas science and technology. Springer, Cham, pp 101–115

    Chapter  Google Scholar 

  • Enzmann F, Mayer F, Rother M, Holtmann D (2018) Methanogens: biochemical background and biotechnological applications. AMB Express 8:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum bathyarchaeota revealed by genome-centric metagenomics. Science 350:434

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Li G, Deng S, Deng C, Wang Z, Zhang Z (2020) Effect of carbon nanotube and styrene-acrylic emulsion additives on microstructure and mechanical characteristics of cement paste. Materials 13:2807

    Article  CAS  PubMed Central  Google Scholar 

  • Felchner-Zwirello M, Winter J, Gallert C (2013) Interspecies distances between propionic acid degraders and methanogens in syntrophic consortia for optimal hydrogen transfer. Appl Microbiol Biotechnol 97:9193–9205

    Article  CAS  PubMed  Google Scholar 

  • Feng D, **a A, Liao Q, Nizami A-S, Sun C, Huang Y, Zhu X, Zhu X (2020) Carbon cloth facilitates semi-continuous anaerobic digestion of organic wastewater rich in volatile fatty acids from dark fermentation. Environ Pollut 272:116030

    Article  PubMed  Google Scholar 

  • Fernandez AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66:4058–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gahlot P, Ahmed B, Tiwari SB, Aryal N, Khursheed A, Kazmi AA, Tyagi VK (2020) Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: mechanism and application. Environ Technol Innov 20:101056

    Article  CAS  Google Scholar 

  • Goodwin S, Giraldo-Gomez E, Mobarry B, Switzenbaum MS (1991) Comparison of diffusion and reaction rates in anaerobic microbial aggregates. Microb Ecol 22:161–174

    Article  CAS  PubMed  Google Scholar 

  • Gu M, Yin Q, Liu Y, Du J, Wu G (2019) New insights into the effect of direct interspecies electron transfer on syntrophic methanogenesis through thermodynamic analysis. Bioresour Technol Rep 7:100225

    Article  Google Scholar 

  • Guo Z, Gao L, Wang L, Liu W, Wang A (2018) Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers. Front Environ Sci Eng 12:13

    Article  Google Scholar 

  • Guo B, Zhang Y, Zhang L, Zhou Y, Liu Y (2020a) RNA-based spatial community analysis revealed intra-reactor variation and expanded collection of direct interspecies electron transfer microorganisms in anaerobic digestion. Bioresour Technol 298:122534

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Sun C, Lin R, **a A, Huang Y, Zhu X, Show P-L, Murphy JD (2020b) Effects of foam nickel supplementation on anaerobic digestion: direct interspecies electron transfer. J Hazard Mater 399:122830

    Article  CAS  PubMed  Google Scholar 

  • Ha PT, Lindemann SR, Shi L, Dohnalkova AC, Fredrickson JK, Madigan MT, Beyenal H (2017) Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Comm 8:13924

    Article  CAS  Google Scholar 

  • He J, Zhao S, Lian Y, Zhou M, Wang L, Ding B, Cui S (2017) Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries. Electrochim Acta 229:306–315

    Article  CAS  Google Scholar 

  • Hu Q, Sun D, Ma Y, Qiu B, Guo Z (2017) Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. Polymer 120:236–243

    Article  CAS  Google Scholar 

  • ** Z, Zhao Z, Zhang Y (2019) Potential of direct interspecies electron transfer in synergetic enhancement of methanogenesis and sulfate removal in an up-flow anaerobic sludge blanket reactor with magnetite. Sci Total Environ 677:299–306

    Article  CAS  PubMed  Google Scholar 

  • **g Y, Wan J, Angelidaki I, Zhang S, Luo G (2017) iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Res 108:212–221

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Baek G, Lee C (2020) Magnetite-assisted in situ microbial oxidation of H2S to S0 during anaerobic digestion: a new potential for sulfide control. Chem Eng J 397:124982

    Article  CAS  Google Scholar 

  • Kaparaju P, Buendia I, Ellegaard L, Angelidakia I (2008) Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. Bioresour Technol 99:4919–4928

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Geoffrey G (2008) Bacterial physiology and metabolism. Cambridge University Press, New York

    Book  Google Scholar 

  • Kim M, Ahn Y-H, Speece RE (2002) Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res 36:4369–4385

    Article  CAS  PubMed  Google Scholar 

  • La DD, Truong TN, Pham TQ, Vo HT, Tran NT, Nguyen TA, Nadda AK, Nguyen TT, Chang SW, Chung WJ, Nguyen DD (2020) Scalable fabrication of modified graphene nanoplatelets as an effective additive for engine lubricant oil. Nanomaterials 10:877

    Article  CAS  PubMed Central  Google Scholar 

  • Lee J-Y, Lee S-H, Park H-D (2016) Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors. Bioresour Technol 205:205–212

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kim E, Han G, Tongco JV, Shin SG, Hwang S (2018) Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: a full-scale study. Bioresour Technol 259:388–397

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Koo T, Yulisa A, Hwang S (2019) Magnetite as an enhancer in methanogenic degradation of volatile fatty acids under ammonia-stressed condition. J Environ Manag 241:418–426

    Article  CAS  Google Scholar 

  • Lei Y, Sun D, Dang Y, Chen H, Zhao Z, Zhang Y, Holmes DE (2016) Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth. Bioresour Technol 222:270–276

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Wei L, Liu T, **ao Y, Dang Y, Sun D, Holmes DE (2018) Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant. Chem Eng J 348:992–999

    Article  CAS  Google Scholar 

  • Lei Y, Sun D, Dang Y, Feng X, Huo D, Liu C, Zheng K, Holmes DE (2019) Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. Water Res 161:570–580

    Article  CAS  PubMed  Google Scholar 

  • Lemaire ON, Jespersen M, Wagner T (2020) CO2-fixation strategies in energy extremophiles: what can we learn from acetogens? Front Microbiol 11:486–486

    Article  PubMed  PubMed Central  Google Scholar 

  • Leng L, Yang P, Singh S, Zhuang H, Xu L, Chen W-H, Dolfing J, Li D, Zhang Y, Zeng H, Chu W, Lee P-H (2018) A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresour Technol 247:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015a) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ Microbiol 17:1533–1547

    Article  PubMed  Google Scholar 

  • Li L-L, Tong Z-H, Fang C-Y, Chu J, Yu H-Q (2015b) Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res 70:1–8

    Article  PubMed  Google Scholar 

  • Li Y, Zhang Y, Yang Y, Quan X, Zhao Z (2017) Potentially direct interspecies electron transfer of methanogenesis for syntrophic metabolism under sulfate reducing conditions with stainless steel. Bioresour Technol 234:303–309

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Xu M, Wang G, Chen R, Qiao W, Wang X (2018) Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment. Bioresour Technol 249:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Lide DR (1995) CRC handbook of chemistry and physics: a ready-reference book of chemical and physical data. CRC Press, Boca Raton

    Google Scholar 

  • Lim EY, Tian H, Chen Y, Ni K, Zhang J, Tong YW (2020) Methanogenic pathway and microbial succession during start-up and stabilization of thermophilic food waste anaerobic digestion with biochar. Bioresour Technol 314:123751

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 239:345–352

    Article  CAS  PubMed  Google Scholar 

  • Lin R, Cheng J, Ding L, Murphy JD (2018) Improved efficiency of anaerobic digestion through direct interspecies electron transfer at mesophilic and thermophilic temperature ranges. Chem Eng J 350:681–691

    Article  CAS  Google Scholar 

  • Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  • Liu F, Rotaru A-E, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2015) Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environ Microbiol 17:648–655

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Gu M, Yin Q, Wu G (2019) Inhibition mitigation and ecological mechanism of mesophilic methanogenesis triggered by supplement of ferroferric oxide in sulfate-containing systems. Bioresour Technol 288:121546

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu T, Chen S, Yu H, Zhang Y, Quan X (2020) Enhancing anaerobic digestion in anaerobic integrated floating fixed-film activated sludge (an-IFFAS) system using novel electron mediator suspended biofilm carriers. Water Res 175:115697

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2011) Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci 4:4896–4906

    Article  CAS  Google Scholar 

  • Lovley DR (2017) Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol 71:643–664

    Article  CAS  PubMed  Google Scholar 

  • Lü C, Shen Y, Li C, Zhu N, Yuan H (2020) Redox-active biochar and conductive graphite stimulate methanogenic metabolism in anaerobic digestion of waste-activated sludge: beyond direct interspecies electron transfer. ACS Sustain Chem Eng 8:12626–12636

    Article  Google Scholar 

  • Lubitz W, Ogata H, Rüdiger O, Reijerse E (2014) Hydrogenases. Chem Rev 114:4081–4148

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Lü F, Shao L, He P (2015) Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res 68:710–718

    Article  CAS  PubMed  Google Scholar 

  • Martins G, Salvador AF, Pereira L, Alves MM (2018) Methane production and conductive materials: a critical review. Environ Sci Technol 52:10241–10253

    Article  CAS  PubMed  Google Scholar 

  • Mei R, Nobu MK, Narihiro T, Yu J, Sathyagal A, Willman E, Liu W-T (2018) Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors. Water Res 147:403–412

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–e00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen CF, Lange L, Meyer AS (2019) Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 37:107408

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Kang H-J, Park K-H, Park H-D (2018a) Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresour Technol 254:300–311

    Article  CAS  PubMed  Google Scholar 

  • Park J-H, Park J-H, Je Seong H, Sul WJ, ** K-H, Park H-D (2018b) Metagenomic insight into methanogenic reactors promoting direct interspecies electron transfer via granular activated carbon. Bioresour Technol 259:414–422

    Article  CAS  PubMed  Google Scholar 

  • Petrovic S (2021) Overpotential. Electrochemistry crash course for engineers. Springer, Cham, pp 59–64

    Google Scholar 

  • Prüsse U, Hähnlein M, Daum J, Vorlop K-D (2000) Improving the catalytic nitrate reduction. Catal Today 55:79–90

    Article  Google Scholar 

  • Rotaru A-E, Shrestha PM, Liu F, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78:7645–7651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotaru A-E, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014a) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin KP, Lovley DR (2014b) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to methanosaeta for the reduction of carbon dioxide to methane. Energy Environ Sci 7:408–415

    Article  CAS  Google Scholar 

  • Salvador AF, Martins G, Melle-Franco M, Serpa R, Stams AJ, Cavaleiro AJ, Pereira MA, Alves MM (2017) Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environ Microbiol 19:2727–2739

    Article  CAS  PubMed  Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schink B, Montag D, Keller A, Müller N (2017) Hydrogen or formate: alternative key players in methanogenic degradation. Environ Microbiol Rep 9:189–202

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JE, Ahring BK (1993) Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 59:2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt JE, Ahring BK (1995) Interspecies electron transfer during propionate and butyrate degradation in mesophilic, granular sludge. Appl Environ Microbiol 61:2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha PM, Rotaru A-E (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:237

    Article  PubMed  PubMed Central  Google Scholar 

  • Shrestha PM, Rotaru A-E, Summers ZM, Shrestha M, Liu F, Lovley DR (2013) Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl Environ Microbiol 79:2397–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha PM, Malvankar NS, Werner JJ, Franks AE, Elena-Rotaru A, Shrestha M, Liu F, Nevin KP, Angenent LT, Lovley DR (2014) Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresour Technol 174:306–310

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Bok FAM, Plugge CM, Eekert MHA, Dolfing J, Schraa G (2006) Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8:371–382

    Article  CAS  PubMed  Google Scholar 

  • Storck T, Virdis B, Batstone DJ (2016) Modelling extracellular limitations for mediated versus direct interspecies electron transfer. ISME J 10:621–631

    Article  CAS  PubMed  Google Scholar 

  • Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions – i. digester performance. Water Res 35:1804–1816

    Article  CAS  PubMed  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Levin BDA, Guzman JJL, Enders A, Muller DA, Angenent LT, Lehmann J (2017) Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Comm 8:14873

    Article  CAS  Google Scholar 

  • Thiele JH, Zeikus JG (1988) Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs. Appl Environ Microbiol 54:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian T, Qiao S, Li X, Zhang M, Zhou J (2017) Nano-graphene induced positive effects on methanogenesis in anaerobic digestion. Bioresour Technol 224:41–47

    Article  CAS  PubMed  Google Scholar 

  • Usman M, Hao S, Chen H, Ren S, Tsang DCW, O-Thong S, Luo G, Zhang S (2019) Molecular and microbial insights towards understanding the anaerobic digestion of the wastewater from hydrothermal liquefaction of sewage sludge facilitated by granular activated carbon (GAC). Environ Int 133:105257

    Article  CAS  PubMed  Google Scholar 

  • Van Steendam C, Smets I, Skerlos S, Raskin L (2019) Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods. Curr Opin Biotech 57:183–190

    Article  PubMed  Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nature Microbiol 1:16170

    Article  CAS  Google Scholar 

  • Vargas M, Malvankar NS, Tremblay P-L, Leang C, Smith JA, Patel P, Snoeyenbos-West O, Nevin KP, Lovley DR (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4:e00105–e00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Vu MT, Noori MT, Min B (2020) Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems. Bioresour Technol 296:122265

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu Y, Gao X, Chen H, Xu X, Zhu L (2018a) Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresour Technol 268:28–35

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Han Y, Han H, Li K, Xu C, Zhuang H (2018b) New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite. Bioresour Technol 257:147–156

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang D, Dai L, Dong B, Dai X (2018c) Magnetite triggering enhanced direct interspecies electron transfer: a scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge. Environ Sci Technol 52:7160–7169

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu Y, ** S, Chen H, Xu X, Wang Z, **ng B, Zhu L (2019a) Responsiveness extracellular electron transfer (EET) enhancement of anaerobic digestion system during start-up and starvation recovery stages via magnetite addition. Bioresour Technol 272:162–170

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yun S, Xu H, Wang C, Zhang Y, Chen J, Jia B (2019b) Mesophilic anaerobic co-digestion of acorn slag waste with dairy manure in a batch digester: focusing on mixing ratios and bio-based carbon accelerants. Bioresour Technol 286:121394

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang C, Liu J, Han Z, Xu Q, Xu X, Zhu L (2020a) Role of magnetite in methanogenic degradation of different substances. Bioresour Technol 314:123720

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gao X, Li Q, Zhao H, Liu Y, Wang XC, Chen R (2020b) Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer. J Hazard Mater 390:121726

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yun S, Shi J, Han F, Liu B, Wang R, Li X (2020c) Critical evidence for direct interspecies electron transfer with tungsten-based accelerants: an experimental and theoretical investigation. Bioresour Technol 311:123519

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Liu Y, Wang C, **ng B, Zhu S, Huang J, Xu X, Zhu L (2021a) Biochar facilitates rapid restoration of methanogenesis by enhancing direct interspecies electron transfer after high organic loading shock. Bioresour Technol 320:124360

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Zhao Z, Zhang Y (2021b) Magnetite-contained biochar derived from Fenton sludge modulated electron transfer of microorganisms in anaerobic digestion. J Hazard Mater 403:123972

    Article  CAS  PubMed  Google Scholar 

  • Xu S, He C, Luo L, Lü F, He P, Cui L (2015) Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour Technol 196:606–612

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wang C, Yan K, Wu J, Zuo J, Wang K (2016) Anaerobic granule-based biofilms formation reduces propionate accumulation under high h2 partial pressure using conductive carbon felt particles. Bioresour Technol 216:677–683

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhang W, Zuo L, Qiao Z, He P (2020) Comparative facilitation of activated carbon and goethite on methanogenesis from volatile fatty acids. Bioresour Technol 302:122801

    Article  CAS  PubMed  Google Scholar 

  • Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2015) Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J Biosci Bioeng 119:678–682

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Shen N, **ao Y, Chen Y, Sun F, Kumar Tyagi V, Zhou Y (2017) The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresour Technol 239:336–344

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Lu D, Liu J, Zhou Y (2019) The interactive effects of ammonia and carbon nanotube on anaerobic digestion. Chem Eng J 372:332–340

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Shi X, Wang C, Wang L, Dai M (2016) Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane. RSC Adv 6:25662–25668

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Y, Li Z, Zhao Z, Quan X, Zhao Z (2017) Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. J Clean Prod 149:1101–1108

    Article  CAS  Google Scholar 

  • Yang B, Xu H, Liu Y, Li F, Song X, Wang Z, Sand W (2020a) Role of GAC-MnO2 catalyst for triggering the extracellular electron transfer and boosting CH4 production in syntrophic methanogenesis. Chem Eng J 383:123211

    Article  CAS  Google Scholar 

  • Yang L, Si B, Zhang Y, Watson J, Stablein M, Chen J, Zhang Y, Zhou X, Chu H (2020b) Continuous treatment of hydrothermal liquefaction wastewater in an anaerobic biofilm reactor: potential role of granular activated carbon. J Clean Prod 276:122836

    Article  CAS  Google Scholar 

  • Yee MO, Rotaru A-E (2020) Extracellular electron uptake in methanosarcinales is independent of multiheme c-type cytochromes. Sci Rep 10:372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yee MO, Snoeyenbos-West OL, Thamdrup B, Ottosen LDM, Rotaru A-E (2019) Extracellular electron uptake by two Methanosarcina species. Front Energy Res 7:29

    Article  Google Scholar 

  • Yin Q, He K, Liu A, Wu G (2017a) Enhanced system performance by dosing ferroferric oxide during the anaerobic treatment of tryptone-based high-strength wastewater. Appl Microbiol Biotechnol 101:3929–3939

    Article  CAS  PubMed  Google Scholar 

  • Yin Q, Miao J, Li B, Wu G (2017b) Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon. Int Biodeterior Biodegradation 119:104–110

    Article  CAS  Google Scholar 

  • Yin Q, Yang S, Wang Z, **ng L, Wu G (2018) Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chem Eng J 333:216–225

    Article  CAS  Google Scholar 

  • Yun S, **ng T, Han F, Shi J, Wang Z, Fan Q, Xu H (2021) Enhanced direct interspecies electron transfer with transition metal oxide accelerants in anaerobic digestion. Bioresour Technol 320:124294

    Article  CAS  PubMed  Google Scholar 

  • Yunus ZM, Al-Gheethi A, Othman N, Hamdan R, Ruslan NN (2020) Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: a microstructure and techno-economic analysis. J Clean Prod 251:119738

    Article  CAS  Google Scholar 

  • Zhang J, Lu Y (2016) Conductive Fe3O4 nanoparticles accelerate syntrophic methane production from butyrate oxidation in two different lake sediments. Front Microbiol 7:1316

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Mao L, Zhang L, Loh K-C, Dai Y, Tong YW (2017) Metagenomic insight into the microbial networks and metabolic mechanism in anaerobic digesters for food waste by incorporating activated carbon. Sci Rep 7:11293

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhang J, Loh K-C (2018) Activated carbon enhanced anaerobic digestion of food waste – laboratory-scale and pilot-scale operation. Waste Manag 75:270–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lu T, Wang Z, Wang Y, Zhong H, Shen P, Wei Y (2019a) Effects of magnetite on anaerobic digestion of swine manure: attention to methane production and fate of antibiotic resistance genes. Bioresour Technol 291:121847

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Ma Y, Ji D, Li X, Zhang J, Zang L (2019b) Synergetic promotion of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with graphite felt in anaerobic digestion. Bioresour Technol 287:121373

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang R, Wang H, Yang K (2020a) Direct interspecies electron transfer stimulated by granular activated carbon enhances anaerobic methanation efficiency from typical kitchen waste lipid-rapeseed oil. Sci Total Environ 704:135282

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Guo B, Zhang L, Liu Y (2020b) Key syntrophic partnerships identified in a granular activated carbon amended uasb treating municipal sewage under low temperature conditions. Bioresour Technol 312:123556

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang L, Guo B, Zhou Y, Gao M, Sharaf A, Liu Y (2020c) Granular activated carbon stimulated microbial physiological changes for enhanced anaerobic digestion of municipal sewage. Chem Eng J 400:125838

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang Y (2019) Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: a practical engineering case study. Renew Energ 136:846–855

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang Y, Woodard TL, Nevin KP, Lovley DR (2015) Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol 191:140–145

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang Y, Holmes DE, Dang Y, Woodard TL, Nevin KP, Lovley DR (2016a) Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour Technol 209:148–156

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang Y, Yu Q, Dang Y, Li Y, Quan X (2016b) Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate. Water Res 102:475–484

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Li Y, Quan X, Zhang Y (2017a) New application of ethanol-type fermentation: stimulating methanogenic communities with ethanol to perform direct interspecies electron transfer. ACS Sustain Chem Eng 5:9441–9453

    Article  CAS  Google Scholar 

  • Zhao Z, Li Y, Quan X, Zhang Y (2017b) Towards engineering application: potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Res 115:266–277

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang Y, Li Y, Dang Y, Zhu T, Quan X (2017c) Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem Eng J 313:10–18

    Article  CAS  Google Scholar 

  • Zhao Z, Li Y, He J, Zhang Y (2018) Establishing direct interspecies electron transfer during laboratory-scale anaerobic digestion of waste activated sludge via biological ethanol-type fermentation pretreatment. ACS Sustain Chem Eng 6:13066–13077

    Article  CAS  Google Scholar 

  • Zhao Z, Li Y, Zhang Y, Lovley DR (2020a) Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience 23:101794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Wang J, Li Y, Zhu T, Yu Q, Wang T, Liang S, Zhang Y (2020b) Why do dieters like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. Water Res 171:115425

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Liu F, Wang B, Zhang Y, Lovley DR (2020) Methanobacterium capable of direct interspecies electron transfer. Environ Sci Technol 54:15347–15354

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Wang T, Chen S, Hu Q, Cheng X, Sun D, Vupputuri S, Qiu B, Liu H, Guo Z (2021) Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment. J Colloid Interface Sci 581:314–322

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zheng H, Ai G, Zhang G, Liu D, Liu X, Dong X (2012) The genome characteristics and predicted function of methyl-group oxidation pathway in the obligate aceticlastic methanogens, Methanosaeta spp. PLoS One 7:e36756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Zhao Z, Zhang Y (2019) Using straw as a bio-ethanol source to promote anaerobic digestion of waste activated sludge. Bioresour Technol 286:121388

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, Tang J, Wang Y, Hu M, Zhou S (2015) Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J Hazard Mater 293:37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF-2020R1A2C2004368).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsoo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, C. (2022). Engineering Direct Interspecies Electron Transfer for Enhanced Methanogenic Performance. In: Sinharoy, A., Lens, P.N.L. (eds) Renewable Energy Technologies for Energy Efficient Sustainable Development. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-87633-3_2

Download citation

Publish with us

Policies and ethics

Navigation