Efficient Biogas Production Through Syntrophic Microbial Partnerships in the Presence of Conductive Materials in Anaerobic Digesters Treating Organic Waste Streams: A Critical Assessment

  • Chapter
  • First Online:
Anaerobic Biodigesters for Human Waste Treatment

Part of the book series: Environmental and Microbial Biotechnology ((EMB))

  • 399 Accesses

Abstract

The limited availability of resources is nowadays the main driving force of changing our societal focus from conventional waste treatment and disposal toward resource recovery from organic waste streams. One possibility for wastewater treatment that generates net energy is anaerobic digestion (AD), where microorganisms break down complex organic matter anaerobically into a variety of volatile organic acids, which are subsequently converted into biogas mainly methane (CH4) by methanogens. Since methanogens can only consume mono- and/or di-carbon organic compounds, such as acetate, they have to build syntrophic partnerships with other microorganisms (e.g., fermenting bacteria) for CH4 production from more complex substrates, including food wastewater. These syntrophic partnerships involve interspecies electron transfer via electron carriers, where methanogens use H2 and/or formate as electron shuttles to scavenge electrons from bacterial electron donors to bacterial electron acceptors, which results in the reduction of CO2 to methane. However, recent studies suggested that a specific type of electroactive bacteria could use the advantage of conductive materials to transfer electrons directly to methanogens without the need for the indirect H2/formate pathway. This unique intercellular electron transfer route—which is known as “direct interspecies electron transfer (DIET)”—allows more efficient CH4 production from organic matter in a metabolically and thermodynamically more efficient manner, enabling higher CH4 production rate and shorter start-up time. This book chapter will provide a critical assessment of the DIET mechanism driven by conductive materials that enable value-added resource recovery from different types of organic waste streams, their current limitations, and their potential scaling-up opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Article  CAS  PubMed  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domíguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Kim J, Cho K, Bae H, Lee C (2015) The biostimulation of anaerobic digestion with (semi) conductive ferric oxides: their potential for enhanced biomethanation. Appl Microbiol Biotechnol 99:10355–10366

    Article  CAS  PubMed  Google Scholar 

  • Baek G, Kim J, Kim J, Lee C (2018) Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies 11(1):107

    Article  Google Scholar 

  • Batstone DJ, Picioreanu C, van Loosdrecht MCM (2006) Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res 40:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Capson-Tojo G, Moscoviz R, Ruiz D, Santa-Catalina G, Trably E, Rouez M, Crest M, Steyer JP, Bernet N, Delgenès JP (2018) Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste. Bioresour Technol 260:157–168

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Rotaru AE, Liu F, Philips J, Woodard TL, Nevin KP, Lovley DR (2014) Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresour Technol 173:82–86

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Liu C, Liu X, Sun D, Li P, Qiu B, Dang Y, Karpinski NA, Smith JA, Holmes DE (2020) Magnetite enhances anaerobic digestion of high salinity organic wastewater. Environ Res 189:109884

    Article  CAS  PubMed  Google Scholar 

  • Chiappero M, Demichelis F, Norouzi O, Berruti F, Hu M, Mašek O, Di Maria F, Fiore S (2020) Review of biochar application in anaerobic digestion processes. Renew Sust Energ Rev 131:110037

    Article  CAS  Google Scholar 

  • Cruz Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ Sci Technol 48:7536–7543

    Article  CAS  PubMed  Google Scholar 

  • Dang Y, Holmes DE, Zhao Z, Woodard TL, Zhang Y, Sun D, Wang LY, Nevin KP, Lovley DR (2016) Enhancing anaerobic digestion of complex organic waste with carbon-based conductive materials. Bioresour Technol 220:516–522

    Article  CAS  PubMed  Google Scholar 

  • De Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375

    Article  PubMed  CAS  Google Scholar 

  • El-Qelish M, Chatterjee P, Dessì P, Kokko M, El-Gohary F, Abo-Aly M, Rintala J (2020) Bio-hydrogen production from sewage sludge: screening for pretreatments and semi-continuous reactor operation. Waste Biomass Valoriz 11:4225–4234

    Article  CAS  Google Scholar 

  • Feliciano GT, Steidl RJ, Reguera G (2015) Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations. Phys Chem Chem Phys 17:22217–22226

    Article  CAS  PubMed  Google Scholar 

  • Gahlot P, Ahmed B, Tiwari SB, Aryal N, Khursheed A, Kazmi AA, Tyagi VK (2020) Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: mechanism and application. Environ Technol Innov 20:101056

    Article  CAS  Google Scholar 

  • Guo X, Chen H, Zhu X, **a A, Liao Q, Huang Y, Zhu X (2021) Revealing the role of conductive materials on facilitating direct interspecies electron transfer in syntrophic methanogenesis: a thermodynamic analysis. Energy 229:120747

    Article  CAS  Google Scholar 

  • Hu Q, Sun D, Ma Y, Qiu B, Guo Z (2017) Conductive polyaniline nanorods enhanced methane production from anaerobic wastewater treatment. Polymer 120:236–243

    Article  CAS  Google Scholar 

  • Kato S, Hashimoto K, Watanabe K (2012) Methanogenesis facilitated by electric syntrophy via (semi) conductive iron-oxide minerals. Environ Microbiol 14:1646–1654

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Wei L, Liu T, **ao Y, Dang Y, Sun D, Holmes DE (2018) Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant. Chem Eng J 348:992–999

    Article  CAS  Google Scholar 

  • Lei Y, Sun D, Dang Y, Feng X, Huo D, Liu C, Zheng K, Holmes DE (2019) Metagenomic analysis reveals that activated carbon aids anaerobic digestion of raw incineration leachate by promoting direct interspecies electron transfer. Water Res 161:570–580

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chang J, Liu P, Fu L, Ding D, Lu Y (2015) Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments. Environ Microbiol 17:1533–1547

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Cheng J, Zhang J, Zhou J, Cen K, Murphy JD (2017) Boosting biomethane yield and production rate with graphene: the potential of direct interspecies electron transfer in anaerobic digestion. Bioresour Technol 239:345–352

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Rotaru AE, Shrestha PM, Malvankar NS, Nevin KP, Lovley DR (2012) Promoting direct interspecies electron transfer with activated carbon. Energy Environ Sci 5:8982–8989

    Article  CAS  Google Scholar 

  • Liu S, Song H, Wei S, Yang F, Li X (2014) Bio-cathode materials evaluation and configuration optimization for power output of vertical subsurface flow constructed wetland—microbial fuel cell systems. Bioresour Technol 166:575–583

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 10:101–105

    Article  Google Scholar 

  • Lovley DR (2017) Syntrophy goes electric: direct interspecies electron transfer. Annu Rev Microbiol 71:643–664

    Article  CAS  PubMed  Google Scholar 

  • Lu K, Yang X, Gielen G, Bolan N, Ok YS, Niazi NK, Xu S, Yuan G, Chen X, Zhang X (2017) Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J Environ Manag 186:285–292

    Article  CAS  Google Scholar 

  • Luo C, Lü F, Shao L, He P (2015) Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res 68:710–718

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2008) Brock biology of microorganisms 12th Ed. Int Microbiol 11:65–73

    Google Scholar 

  • Mahmoud M, Torres CI, Rittmann BE (2017a) Changes in glucose fermentation pathways as a response to the free ammonia concentration in microbial electrolysis cells. Environ Sci Technol 51:13461–13470

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud M, Parameswaran P, Torres CI, Rittmann BE (2017b) Electrochemical techniques reveal that total ammonium stress increases electron flow to anode respiration in mixed-species bacterial anode biofilms. Biotechnol Bioeng 114: 1151-1159 https://doi.org/10.1002/bit.26246

    Article  CAS  PubMed  Google Scholar 

  • Martins G, Salvador AF, Pereira L, Alves MM (2018) Methane production and conductive materials: a critical review. Environ Sci Technol 52:10241–10253

    Article  CAS  PubMed  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535

    Article  CAS  PubMed  Google Scholar 

  • McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72

    Article  CAS  PubMed  Google Scholar 

  • McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr Opin Biotechnol 20:623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meegoda JN, Li B, Patel K, Wang LB (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15:2224

    Article  CAS  PubMed Central  Google Scholar 

  • Morita M, Malvankar NS, Franks AE, Summers ZM, Giloteaux L, Rotaru AE, Rotaru C, Lovley DR (2011) Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2:e00159–e00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa A, Im S, Song YC, Kang S, Kim DH (2020) Enhanced anaerobic digestion of long chain fatty acid by adding magnetite and carbon nanotubes. Microorganisms 8:333

    Article  CAS  PubMed Central  Google Scholar 

  • Nasr M, Tawfik A, Awad HM, Galal A, El-qelish M, Abdul M, Mumtaz M, Khan A, Rehan M, Nizami A, Lee M (2021) Dual production of hydrogen and biochar from industrial effluent containing phenolic compounds. Fuel 301:121087

    Article  CAS  Google Scholar 

  • Neilands JB (1974) Microbial iron metabolism: a comprehensive treatise. Academic Press, New York, NY

    Google Scholar 

  • Panigrahi S, Dubey BK (2019) A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renew Energy 143:779–797

    Article  CAS  Google Scholar 

  • Park JH, Kang HJ, Park KH, Park HD (2018) Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications. Bioresour Technol 254:300–311

    Article  CAS  PubMed  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rotaru AE, Woodard TL, Nevin KP, Lovley DR (2015) Link between capacity for current production and syntrophic growth in Geobacter species. Front Microbiol 6:1–8

    Article  Google Scholar 

  • Salvador AF, Martins G, Melle-Franco M, Serpa R, Stams AJM, Cavaleiro AJ, Pereira MA, Alves MM (2017) Carbon nanotubes accelerate methane production in pure cultures of methanogens and in a syntrophic coculture. Environ Microbiol 19:2727–2739

    Article  CAS  PubMed  Google Scholar 

  • Shen N, Liang Z, Chen Y, Song H, Wan J (2020) Bioresource Technology Enhancement of syntrophic acetate oxidation pathway via single walled carbon nanotubes addition under high acetate concentration and thermophilic condition. Bioresour Technol 306:123182

    Article  CAS  PubMed  Google Scholar 

  • Shrestha PM, Rotaru AE (2014) Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5:237

    PubMed  PubMed Central  Google Scholar 

  • Sieber JR, Le HM, McInerney MJ (2014) The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 16:177–188

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 15:150–155

    Article  CAS  PubMed  Google Scholar 

  • Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ (2014) Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ Sci Technol 48:5972–5981

    Article  CAS  PubMed  Google Scholar 

  • Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577

    Article  CAS  PubMed  Google Scholar 

  • Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Han Y, Han H, Li K, Xu C, Zhuang H (2018) New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite. Bioresour Technol 257:147–156

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Wang C, ** L, Lu D, Chen H, Zhu W, Xu X, Zhu L (2019) Response of syntrophic aggregates to the magnetite loss in continuous anaerobic bioreactor. Water Res 164:114925

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gao X, Li Q, Zhao H, Liu Y, Wang XC, Chen R (2020) Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer. J Hazard Mater 390:121726

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang T, Si B, Watson J, Zhang Y (2021) Accelerating anaerobic digestion for methane production: potential role of direct interspecies electron transfer. Renew Sust Energ Rev 145:111069

    Article  CAS  Google Scholar 

  • Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590

    Article  CAS  PubMed  Google Scholar 

  • Welte C, Deppenmeier U (2014) Bioenergetics and anaerobic respiratory chains of aceticlastic methanogens. Biochim Biophys Acta Bioenerg 1837:1130–1147

    Article  CAS  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:23501

    Article  CAS  Google Scholar 

  • **ao L, Liu F, Lichtfouse E, Zhang P, Feng D, Li F (2020) Methane production by acetate dismutation stimulated by Shewanella oneidensis and carbon materials: an alternative to classical CO2 reduction. Chem Eng J 389:124469

    Article  CAS  Google Scholar 

  • Xu S, He C, Luo L, Lü F, He P, Cui L (2015) Comparing activated carbon of different particle sizes on enhancing methane generation in upflow anaerobic digester. Bioresour Technol 196:606–612

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Chang J, Wang H, Liu Y, Zhang X, Liang P, Huang X (2019) Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: effects and mechanisms. Sci Total Environ 695:133876

    Article  CAS  PubMed  Google Scholar 

  • Yamada C, Kato S, Ueno Y, Ishii M, Igarashi Y (2015) Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. J Biosci Bioeng 119:678–682

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Shen N, **ao Y, Chen Y, Sun F, Tyagi VK, Zhou Y (2017) The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresour Technol 239:336–344

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Mukherjee M, Zhou Y (2020) Direct interspecies electron transfer (DIET) can be suppressed under ammonia-stressed condition–reevaluate the role of conductive materials. Water Res 183:116094

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Guo R, Shi X, Wang C, Wang L, Dai M (2016) Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane. RSC Adv 6:25662–25668

    Article  CAS  Google Scholar 

  • Yang Y, Zhang Y, Li Z, Zhao Z, Quan X, Zhao Z (2017) Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition. J Clean Prod 149:1101–1108

    Article  CAS  Google Scholar 

  • Yee MO, Deutzmann J, Spormann A, Rotaru AE (2020) Cultivating electroactive microbes—from field to bench. Nanotechnology 31:174003

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang Y (2019) Application of ethanol-type fermentation in establishment of direct interspecies electron transfer: a practical engineering case study. Renew Energy 136:846–855

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang Y, Wang L, Quan X (2015a) Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci Rep 5:1–12

    Google Scholar 

  • Zhao Z, Zhang Y, Woodard TL, Nevin KP, Lovley DR (2015b) Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresour Technol 191:140–145

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Zhang Y, Quan X, Zhao H (2016) Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell. Bioresour Technol 200:235–244

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Li Y, Quan X, Zhang Y (2017a) New application of ethanol-type fermentation: stimulating methanogenic communities with ethanol to perform direct interspecies electron transfer. ACS Sustain Chem Eng 5:9441–9453

    Article  CAS  Google Scholar 

  • Zhao Z, Zhang Y, Li Y, Dang Y, Zhu T, Quan X (2017b) Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem Eng J 313:10–18

    Article  CAS  Google Scholar 

  • Zhuang L, Tang J, Wang Y, Hu M, Zhou S (2015) Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J Hazard Mater 293:37–45

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank the National Research Centre for providing the funding for this work (project # TT110803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoud, M., El-Qelish, M. (2022). Efficient Biogas Production Through Syntrophic Microbial Partnerships in the Presence of Conductive Materials in Anaerobic Digesters Treating Organic Waste Streams: A Critical Assessment. In: Meghvansi, M.K., Goel, A.K. (eds) Anaerobic Biodigesters for Human Waste Treatment. Environmental and Microbial Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4921-0_13

Download citation

Publish with us

Policies and ethics

Navigation