Amino Acids, Amino Acid Derivatives and Peptides as Antioxidants

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

The biological concept of antioxidant refers to any compound that is able to delay or prevent the oxidation of easily oxidizable substrates, such as DNA, proteins and lipids. Epidemiological studies have proven the ability of antioxidants to contain the effects of reactive oxygen and nitrogen species and decrease the incidence of cancer, as well as other degenerative diseases.

The demand for natural antioxidants has gained great importance in recent years, since some synthetic antioxidants have health risks, mainly liver damage. Phenolic compounds are the most abundant class of natural antioxidants due to their ability to break chains and eliminate radicals, protecting cells from their harmful effects.

Phenolic amino acids or amino acids coupled with phenolic or catecholic groups are bioactive substances involved in suppressing the harmful effects caused by oxidative stress, having biological activity such as anti-cancer, antimicrobial, anti-atherogenic, among others. Studies confirm that the conjugation of amino acids with phenolic acids is useful as a strategy to improve antioxidant efficiency and bioactivity.

The mitochondria play a vital role in regulating cellular energy metabolism. Their ability to regulate the redox/oxidative balance is critical in controlling cellular life and death. Thus, mitochondrial dysfunction caused by oxidative damage has been implicated in several human pathologies such as neurodegenerative diseases and metabolic syndromes. The development of new therapeutic strategies involving the minimization of mitochondrial dysfunction is of major importance. In fact, great progress has been made in the development and functional testing of mitochondria-targeted molecules. Special attention has been given to small peptides capable of regulating mitochondrial reactive oxygen species production and facilitating mitochondrial respiration and ATP synthesis. Thus, in the last two decades, many structurally modified peptides with antioxidant properties and improved ability to cross the cell membrane while maintaining low toxicity and immunogenicity have been synthesized and tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alta RY, Vitorino HA, Goswami D, Liria CW, Wisnovsky SP, Kelley SO, Machini MT, Esposito BP (2017) Mitochondria-penetrating peptides conjugated to desferrioxamine as chelators for mitochondrial labile iron. PLoS One 12:e0171729

    Article  PubMed  PubMed Central  Google Scholar 

  • Anders M, Robotham JL, Sheu S-S (2006) Mitochondria: new drug targets for oxidative stress-induced diseases. Expert Opin Drug Metab Toxicol 2:71–79

    Article  CAS  PubMed  Google Scholar 

  • Apostolova N, Victor VM (2015) Molecular strategies for targeting antioxidants to mitochondria: therapeutic implications. Antioxid Redox Signal 22:686–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroui S, Kenani A (2020) Cell-penetrating peptides: a challenge for drug delivery. In: Cheminformatics and its applications. IntechOpen

    Google Scholar 

  • Bast A, Haenen GR (2002) The toxicity of antioxidants and their metabolites. Environ Toxicol Pharmacol 11:251–258

    Article  CAS  PubMed  Google Scholar 

  • Benchekroun M, Romero A, Egea J, Leon R, Michalska P, Buendia I, Jimeno ML, Jun D, Janockova J, Sepsova V, Soukup O, Bautista-Aguilera OM, Refouvelet B, Ouari O, Marco-Contelles J, Ismaili L (2016) The antioxidant additive approach for Alzheimer’s disease therapy: new ferulic (lipoic) acid plus melatonin modified tacrines as cholinesterases inhibitors, direct antioxidants and nuclear factor (erythroid-derived 2)-like 2 activators. J Med Chem 59:9967–9973

    Article  CAS  PubMed  Google Scholar 

  • Bierbaum G, Gotz F, Peschel A, Kupke T, VandeKamp M, Sahl HG (1996) Protein engineering of lantibiotics. Anton Leeuw Int J G 69:119–127

    Article  CAS  Google Scholar 

  • Bougatef A, Balti R, Haddar A, Jellouli K, Souissi N, Nasri M (2012) Protein hydrolysates from bluefin tuna (Thunnus thynnus) heads as influenced by the extent of enzymatic hydrolysis. Biotechnol Bioprocess Eng 17:841–852

    Article  CAS  Google Scholar 

  • Cerrato CP, Pirisinu M, Vlachos EN, Langel U (2015) Novel cell-penetrating peptide targeting mitochondria. FASEB J 29:4589–4599

    Article  CAS  PubMed  Google Scholar 

  • Chamberlain GR, Tulumello DV, Kelley SO (2013) Targeted delivery of doxorubicin to mitochondria. ACS Chem Biol 8:1389–1395

    Article  CAS  PubMed  Google Scholar 

  • Chan KM, Decker EA, Feustman DC (1994) Endogenous skeletal muscle antioxidants. Crit Rev Food Sci Nutr 34:403–426

    Article  CAS  PubMed  Google Scholar 

  • Chen HM, Muramoto K, Yamauchi F, Fujimoto K, Nokihara K (1998) Antioxidative properties of histidine containing peptides designed from peptide fragments found in the digests of a soybean protein. J Agric Food Chem 46:49–53

    Article  CAS  PubMed  Google Scholar 

  • Chi CF, Wang B, Hu FY, Wang YM, Zhang B, Deng SG, Wu CW (2015) Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leather jacket (Navodon septentrionalis) skin. Food Res Int 73:124–139

    Article  CAS  Google Scholar 

  • Chochkova MG, Chorbadzhiyska EY, Ivanova GI, Najdenski H, Ninova M, Milkova T (2012) Antimicrobial and radical scavenging activities of N-hydroxycinnamoyl-L-cysteine and-L-proline ethyl ester. Nat Prod J 2:50–54

    CAS  Google Scholar 

  • Cirico TL, Omaye S (2006) Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food Chem Toxicol 44:510–516

    Article  CAS  PubMed  Google Scholar 

  • Davalos A, Miguel M, Bartolome B, Lopez-Fandino R (2004) Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 67:1939–1944

    Article  CAS  PubMed  Google Scholar 

  • Dawid S (2015) α,β-Dehydroamino acids in naturally occurring peptides. Amino Acids 47:1–17

    Article  Google Scholar 

  • De Baltas P, Bedos-Belval F (2011) Cinnamic acid derivatives as anticancer agents—a review. Curr Med Chem 18:1672–1703

    Article  PubMed  Google Scholar 

  • Derakhshankhah H, Jafari S (2018) Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomed Pharmacother 108:1090–1096

    Article  CAS  PubMed  Google Scholar 

  • El Haouari M (2019) Platelet oxidative stress and its relationship with cardiovascular diseases in type 2 diabetes mellitus patients. Curr Med Chem 26:4145–4165

    Article  PubMed  Google Scholar 

  • Elias RJ, Kellerby SS, Decker EA (2008) Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr 48:430–441

    Article  CAS  PubMed  Google Scholar 

  • Esfandi R, Walters ME, Tsopmo A (2019) Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals. Heliyon 5:e01538

    Article  PubMed  PubMed Central  Google Scholar 

  • Feni L, Neundorf I (2017) The current role of cell-penetrating peptides in cancer therapy. Adv Exp Med Biol 1030:279–295

    Article  CAS  PubMed  Google Scholar 

  • Fernandes S, Ribeiro C, Paiva-Martins F, Catarino C, Santos-Silva A (2020) Protective effect of olive oil polyphenol phase II sulfate conjugates on erythrocyte oxidative-induced hemolysis. Food Funct 11:8670–8679

    Article  CAS  PubMed  Google Scholar 

  • Ferreira PMT, Monteiro LS, Coban T, Suzen S (2009) Comparative effect of N-substituted dehydroamino acids and α-tocopherol on rat liver lipid peroxidation activities. J Enzyme Inhib Med Chem 24:967–971

    Article  CAS  PubMed  Google Scholar 

  • Fink W, Liefland M, Mendgen K (1990) Comparison of various stress responses in oat in compatible and nonhost resistant interactions with rust fungi. Physiol Mol Plant Pathol 37:309–321

    Article  CAS  Google Scholar 

  • Foged C, Nielsen HM (2008) Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin Drug Deliv 5:105–117

    Article  CAS  PubMed  Google Scholar 

  • Fonseca SB, Pereira MP, Kelley SO (2009) Recent advances in the use of cell-penetrating peptides for medical and biological applications. Adv Drug Deliv Rev 61:953–964

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Cheng K, Zhang ZM, Fang RQ, Zhu HL (2010) Synthesis, structure and structure-activity relationship analysis of caffeic acid amides as potential antimicrobials. Eur J Med Chem 45:2638–2643

    Article  CAS  PubMed  Google Scholar 

  • Galley HF (2011) Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 107:57–64

    Article  CAS  PubMed  Google Scholar 

  • Georgiev L, Chochkova M, Ivanova G, Najdenski H, Ninova M, Milkova T (2012) Radical scavenging and antimicrobial activities of cinnamoyl amides of biogenic monoamines. Riv Ital Sost Grasse 89:91–102

    CAS  Google Scholar 

  • Georgiev L, Chochkova M, Totseva I, Seizova K, Marinova E, Ivanova G, Ninova M, Najdenski H, Milkova T (2013) Anti-tyrosinase, antioxidant and antimicrobial activities of hydroxycinnamoylamides. Med Chem Res 22:4173–4182

    Article  CAS  Google Scholar 

  • Gilon C, Dechantsreiter MA, Burkhart F, Friedler A, Kessler H (2003) Synthesis of N-alkylated peptides. In: Goodman M, Felix A, Moroder L, Toniolo C (eds) Houben-Weyl: methods of organic chemistry. Synthesis of peptides and peptidomimetics, vol E22c. Thieme, New York, pp 215–271

    Google Scholar 

  • Gonzalez-Perez O, Gonzalez-Castaneda RE (2006) Therapeutic perspectives on the combination of alpha-lipoic acid and vitamin E. Nutr Res 26:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon JE, Jameson RF (1972) Complexes of doubly chelating ligands. Part III. Proton and copper(II) complexes of 3,4-dihydroxyphenylglycine (DOPG). J Chem Soc Dalton Trans 3:307–310

    Article  Google Scholar 

  • Grimble GK (1972) The significance of peptides in clinical nutrition. Rev Surg 29:222–223

    Google Scholar 

  • Gülçin I (2007) Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-dopa. Amino Acids 32:431–438

    Article  PubMed  Google Scholar 

  • Gupta M, Chauhan VS (2011) De novo design of α,β-didehydrophenylalanine containing peptides: from models to applications. Biopolymers 95:161–173

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New York

    Book  Google Scholar 

  • Heijnen CG, Haenen GR, Vekemans JA, Bast A (2001) Peroxynitrite scavenging of flavonoids: structure activity relationship. Environ Toxicol Pharmacol 10:199–206

    Article  CAS  PubMed  Google Scholar 

  • Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    Article  CAS  PubMed  Google Scholar 

  • Hubbard BK, Thomas MG, Walsh C (2000) Biosynthesis of L-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem Biol 7:931–942

    Article  CAS  PubMed  Google Scholar 

  • Jain R, Chauhan VS (1996) Conformational characteristics of peptides containing α,β-dehydroamino acid residues. Biopolymers 40:105–119

    Article  CAS  PubMed  Google Scholar 

  • Jiang J, Ma Z, Castle SL (2015) Bulky α,β-dehydroamino acids: their occurrence in nature, synthesis, and applications. Tetrahedron 71:5431–5451

    Article  CAS  Google Scholar 

  • Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, Lindsay MA (2005) Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol 145:1093–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamoun Z, Kamoun AS, Bougatef A, Chtourou Y, Boudawara T, Nasri M, Zeghal N (2012) Efficacy of sardinelle protein hydrolysate to alleviate ethanol-induced oxidative stress in the heart of adult rats. J Food Sci 77:156–162

    Article  Google Scholar 

  • Kawashima K, Itoh H, Miyoshi M, Chibata I (1979) Antioxidant properties of branched-chain amino acid derivatives. Chem Pharm Bull 27:1912–1916

    Article  CAS  Google Scholar 

  • Khafagy ES, Morishita M (2012) Oral biodrug delivery using cell-penetrating peptide. Adv Drug Deliv Rev 64:531–539

    Article  CAS  Google Scholar 

  • Kotha S (2003) The building block approach to unusual α-amino acid derivatives and peptides. Acc Chem Res 36:342–351

    Article  CAS  PubMed  Google Scholar 

  • Kwak S-Y, Seo H-S, Lee Y-S (2009) Synergistic antioxidative activities of hydroxycinnamoyl-peptides. J Pept Sci 15:634–641

    Article  CAS  PubMed  Google Scholar 

  • Kwak S-Y, Lee S, Yang JK, Lee Y-S (2012) Antioxidative activities of caffeoyl-proline dipeptides. Food Chem 130:847–852

    Article  CAS  Google Scholar 

  • Kwiatkowski JL (2011) Real-world use of iron chelators. Hematol Am Soc Hematol Educ Prog 451–458

    Google Scholar 

  • Lambruschini C, Galante D, Moni L, Ferraro F, Gancia G, Riva R, Traverso A, Banfi L, D’Arrigo C (2017) Multicomponent, fragment-based synthesis of polyphenol-containing peptidomimetics and their inhibiting activity on beta-amyloid oligomerization. Org Biomol Chem 15:9331–9351

    Article  CAS  PubMed  Google Scholar 

  • Langel Ü (2019) Classes and applications of cell-penetrating peptides. In: CPP, cell-penetrating peptides. Springer, pp 29–82

    Google Scholar 

  • Lee S, Han J-M, Kim H, Kim E, Jeong T-S, Lee WS, Cho K-H (2004) Synthesis of cinnamic acid derivatives and their inhibitory effects on LDL-oxidation, acyl-CoA:cholesterol acyltransferase-1 and -2 activity, and decrease of HDL-particle size. Bioorg Med Chem Lett 14:4677–4681

    Article  CAS  PubMed  Google Scholar 

  • Lee S-J, Kim Y-S, Hwang J-W, Kim E-K, Moon S-H, Jeon B-T, Jeon Y-J, Kim JM, Park P-J (2012) Purification and characterization of a novel antioxidative peptide from duck skin by-products that protects liver against oxidative damage. Food Res Int 49:285–295

    Article  CAS  Google Scholar 

  • Liu Q, Kong B, **ong YL, **a X (2010) Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chem 118:403–410

    Article  CAS  Google Scholar 

  • Liu R, **ng L, Fu Q, Zhou GH, Zhang WG (2016) A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants 5:32–47

    Article  PubMed Central  Google Scholar 

  • Magzoub M, Gräslund A (2004) Cell-penetrating peptides: small from inception to application. Q Rev Biophys 37:147–195

    Article  CAS  PubMed  Google Scholar 

  • Meisel H, FitzGerald R (2003) Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Curr Pharm Des 9:1289–1296

    Article  CAS  PubMed  Google Scholar 

  • Meucci E, Mele MC (1997) Amino acids and plasma antioxidant capacity. Amino Acids 12:373–377

    Article  CAS  Google Scholar 

  • Milde J, Elstner EF, Grassmann J (2004) Synergistic inhibition of low-density lipoprotein oxidation by rutin, gamma-terpinene, and ascorbic acid. Phytomedicine 11:105–113

    Article  CAS  PubMed  Google Scholar 

  • Milde J, Elstner EF, Grassmann J (2007) Synergistic effects of phenolics and carotenoids on human low-density lipoprotein oxidation. Mol Nutr Food Res 51:956–961

    Article  CAS  PubMed  Google Scholar 

  • Minter BE, Lowes DA, Webster NR, Galley HF (2020) Differential effects of MitoVitE, α-tocopherol and trolox on oxidative stress, mitochondrial function and inflammatory signalling pathways in endothelial cells cultured under conditions mimicking sepsis. Antioxidants 9:195–209

    Article  CAS  PubMed Central  Google Scholar 

  • Monteiro LS, Oliveira S, Paiva-Martins F, Ferreira PMT, Pereira DM, Andrade PB, Valentão P (2017) Synthesis and preliminary biological evaluation of new phenolic and catecholic dehydroamino acid derivatives. Tetrahedron 73:6199–6209

    Article  CAS  Google Scholar 

  • Monteiro LS, Paiva-Martins F, Oliveira S, Machado I, Costa M (2019) An efficient one-pot synthesis of polyphenolic amino acids and evaluation of their radical-scavenging activity. Bioorg Chem 89:102983–102990

    Article  CAS  PubMed  Google Scholar 

  • Moosmann B, Behl C (2000) Cytoprotective antioxidant function of tyrosine and tryptophan residues in transmembrane proteins. Eur J Biochem 267:5687–5692

    Article  CAS  PubMed  Google Scholar 

  • Morales-Gonzalez JA (2013) Oxidative stress and chronic degenerative diseases, a role for antioxidants. IntechOpen

    Google Scholar 

  • Murase H, Nagao A, Terao J (1993) Antioxidant and emulsifying activity of N-(long-chain-acyl)histidine and N-(long-chain-acyl)carnosine. J Agric Food Chem 41:1601–1604

    Article  CAS  Google Scholar 

  • Murphy MP (2008) Targeting lipophilic cations to mitochondria. Biochim Biophys Acta 1777:1028–1031

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa T, Yonekura T, Nishizawa N, Kitts DD (2001) In vitro and in vivo inhibition of muscle lipid and protein oxidation by carnosine. Mol Cell Biochem 225:29–34

    Article  CAS  PubMed  Google Scholar 

  • Narasimhan B, Belsare D, Pharande D, Mourya V, Dhake A (2004) Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 39:827–834

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES (2012) Cell-penetrating peptides as a novel transdermal drug delivery system. Chem Biol Drug Des 80:639–646

    Article  CAS  PubMed  Google Scholar 

  • Ndhlala AR, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrel J, Javelle F, Paynot M (1993) Wound-induced tyramine hydroxycinnamoyl transferase in potato (Solanum tuberosum) tuber discs. J Plant Physiol 142:518–524

    Article  CAS  Google Scholar 

  • Negrel J, Lofty S, Javelle F (1995) Modulation of the activity of two hydroxycinnamoyl transferases in wound-healing potato tuber discs in response to pectinase or abscisic acid. J Plant Physiol 146:318–325

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2017) Lehninger principles of biochemistry, 7th edn. W.H. Freeman, New York

    Google Scholar 

  • Patterson CE, Rhoades RA (1988) Protective role of sulfhydryl reagents in oxidant lung injury. Exp Lung Res 14:1005–1019

    Article  CAS  PubMed  Google Scholar 

  • Peipp H, Maier W, Schmidt J, Wray V, Strac D (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581–587

    Article  CAS  Google Scholar 

  • Rajapakse N, Mendis E, Jung WK, Je JY, Kim SK (2005) Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties. Food Res Int 38:175–182

    Article  CAS  Google Scholar 

  • Ram N, Aroui S, Jaumain E, Bichraoui H, Mabrouk K, Ronjat M, Lortat-Jacob H, De Waard M (2008) Direct peptide interaction with surface glycosaminoglycans contributes to the cell penetration of Maurocalcine. J Biol Chem 283:24274–24284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH, Manczak M, Kandimalla R (2017) Mitochondria-targeted small molecule SS31: a potential candidate for the treatment of Alzheimer’s disease. Hum Mol Genet 26:1483–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts PR, Burney JD, Black KW, Zaloga GP (1999) Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion 60:332–337

    Article  CAS  PubMed  Google Scholar 

  • Rocha M, Hernandez-Mijares A, Garcia-Malpartida K, Banuls C, Bellod L, Victor VM (2010) Mitochondria-targeted antioxidant peptides. Curr Pharm Des 16:3124–3131

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Plaza JG, Morales-Nava R, Diener C, Schreiber G, Gonzalez ZD, Lara Ortiz MT, Ortega Blake I, Pantoja O, Volkmer R, Klipp E, Herrmann A, Del Rio G (2014) Cell penetrating peptides and cationic antibacterial peptides: two sides of the same coin. J Biol Chem 289:14448–14457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubas W, Grass GM (1991) Gastrointestinal lymphatic absorption of peptides and proteins. Adv Drug Deliv Rev 7:15–69

    Article  CAS  Google Scholar 

  • Samaranayaka AGP, Li-Chan ECY (2011) Food-derived peptidic antioxidants: a review of their production, assessment, and potential applications. J Funct Foods 3:229–254

    Article  CAS  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31:1949–1956

    Article  CAS  PubMed  Google Scholar 

  • Schiller PW (2010) Bi- or multifunctional opioid peptide drugs. Life Sci 86:598–603

    Article  CAS  PubMed  Google Scholar 

  • Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701

    Article  PubMed  Google Scholar 

  • Senoner T, Dichtl W (2019) Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients 11:2090

    Article  CAS  PubMed Central  Google Scholar 

  • Seo H-S, Kwak S-Y, Lee Y-S (2010) Antioxidative activities of histidine containing caffeic acid-dipeptides. Bioorg Med Chem Lett 20:4266–4272

    Article  CAS  PubMed  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  • Shi J, Kakuda Y (2006) Bioavailability and synergistic effects of tea catechins as antioxidants in the human diet. Herbs Challenges Chem Biol 925:254–264

    Article  CAS  Google Scholar 

  • Shi Y-L, Benzie IFF, Buswell JA (2002) L-DOPA oxidation products prevent H2O2-induced oxidative damage to cellular DNA. Life Sci 71:3047–3057

    Article  CAS  PubMed  Google Scholar 

  • Sila A, Bougatef A (2016) Antioxidant peptides from marine by-products: isolation, identification and application in food systems. A review. J Funct Foods 21:10–26

    Article  CAS  Google Scholar 

  • Silvia V, Baldisserotto A, Scalambra E, Malisardi G, Durini E, Manfredini S (2012) Novel molecular combination deriving from natural amino acids and polyphenols: design, synthesis and free-radical scavenging activities. Eur J Med Chem 50:383–392

    Article  CAS  PubMed  Google Scholar 

  • Sinha RK, Eudes F (2015) Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tiss Org 122:227–237

    Article  CAS  Google Scholar 

  • Siodlak D (2015) alpha,beta-Dehydroamino acids in naturally occurring peptides. Amino Acids 47:1–17

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Murphy MP (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11:106–114

    PubMed  Google Scholar 

  • Smith RAJ, Hartley RC, Murphy MP (2008) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 13:3021–3038

    Google Scholar 

  • Son S, Lewis BA (2002) Free radical scavenging and antioxidative activity of caffeic acid amide and ester analogues: structure–activity relationship. J Agric Food Chem 50:468–472

    Article  CAS  PubMed  Google Scholar 

  • Sorriento D, Pascale AV, Finelli R, Carillo AL, Annunziata R, Trimarco B, Iaccarino G (2014) Targeting mitochondria as therapeutic strategy for metabolic disorders. Sci World J. https://doi.org/10.1155/2014/604685

  • Suetsuna K, Ukeda H, Ochi H (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11:128–131

    Article  CAS  PubMed  Google Scholar 

  • Sugumaran M, Tan S, Sun HL (1996) Tyrosinase-catalyzed oxidation of 3, 4-dihydroxyphenylglycine. Arch Biochem Biophys 329:175–180

    Article  CAS  PubMed  Google Scholar 

  • Sun LP, Zhang Y, Zhuang YL (2013) Antiphotoaging effect and purification of an antioxidant peptide from tilapia (Oreochromis niloticus) gelatin peptides. J Funct Foods 5:154–162

    Article  CAS  Google Scholar 

  • Suzen S, Gurkok G, Coban T (2006) Novel N-acyl dehydroalanine derivatives as antioxidants: studies on rat liver lipid peroxidation levels and DPPH free radical scavenging activity. J Enzyme Inhib Med Chem 21:179–185

    Article  CAS  PubMed  Google Scholar 

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10:601–619

    Article  CAS  PubMed  Google Scholar 

  • Tang C-H, Peng J, Zhen D-W, Chen Z (2009) Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates. Food Chem 115:672–678

    Article  CAS  Google Scholar 

  • Teixeira J, Deus CM, Borges F, Oliveira PJ (2018) Mitochondria: targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants. Int J Biochem Cell Biol 97:98–103

    Article  CAS  PubMed  Google Scholar 

  • Torkova A, Koroleva O, Khrameeva E, Fedorova T, Tsentalovich M (2015) Structure-functional study of tyrosine and methionine dipeptides: an approach to antioxidant activity prediction. Int J Mol Sci 16:25353–25376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trombino S, Serini S, Di Nicuolo F, Celleno L, Andò S, Picci N, Calviello G, Palozza P (2004) Antioxidant effect of ferulic acid in isolated membranes and intact cells: synergistic interactions with alpha-tocopherol, beta-carotene, and ascorbic acid. J Agric Food Chem 52:2411–2420

    Article  CAS  PubMed  Google Scholar 

  • Victor V, Rocha M (2007) Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr Pharm Des 13:845–863

    Article  CAS  PubMed  Google Scholar 

  • Wade AM, Tucker HN (1998) Antioxidant characteristics of L-histidine. J Nutr Biochem 9:308–315

    Article  CAS  Google Scholar 

  • Wagstaff KM, Jans DA (2006) Protein transduction: cell penetrating peptides and their therapeutic applications. Curr Med Chem 13:1371–1387

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Liu Z-Q (2013) Ugi multicomponent reaction product: the inhibitive effect on DNA oxidation depends upon the isocyanide moiety. J Org Chem 78:8696–8704

    Article  CAS  PubMed  Google Scholar 

  • Wei Q-Y, Jiang H, Zhang J-X, Guo P-F, Wang H (2012a) Synthesis of N-hydroxycinnamoyl amino acid ester analogues and their free radical scavenging and antioxidative activities. Med Chem Res 21:1905–1911

    Article  CAS  Google Scholar 

  • Wei Q-Y, Jiang H, Zhang J-X, Zhang C, Guo P-F (2012b) The antimicrobial activities of the cinnamoyl amide of amino acid derivatives. Asian J Chem 24:2383–2388

    CAS  Google Scholar 

  • Yamaguchi N, Yokoo Y, Fujimaki M (1975) Studies on antioxidative activities of amino compounds on fats and oils, II: antioxidative activities of dipeptides and their synergistic effects on tocopherol. Nippon Shokuhin Kogyo Gakkaishi 22:425–430

    Article  Google Scholar 

  • Yang J, Hu L, Cai T, Chen Q, Ma Q, Yang J, Meng C, Hong J (2018) Purification and identification of two novel antioxidant peptides from perilla (Perilla frutescens L. Britton) seed protein hydrolysates. PLoS One 13:e0200021

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye N, Hu P, Xu S, Chen M, Wang S, Hong J, Chen T, Cai T (2018) Preparation and characterization of antioxidant peptides from carrot seed protein. J Food Qual. Article ID 8579094

    Google Scholar 

  • Yogeeta SK, Gnanapragasam A, Kumar SS, Subhashini R, Sathivel A, Devaki T (2006) Synergistic interactions of ferulic acid with ascorbic acid: its cardioprotective role during isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 283:139–146

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279:34682–34690

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Liu X, Singh S, Liu X, Zhang Y, Sawada J, Komatsu M, Belfield KD (2019) Mitochondria penetrating peptide-conjugated TAMRA for live-cell long-term tracking. Bioconjug Chem 30:2312–2316

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís S. Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Monteiro, L.S., Paiva-Martins, F. (2022). Amino Acids, Amino Acid Derivatives and Peptides as Antioxidants. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_17

Download citation

Publish with us

Policies and ethics

Navigation