Log in

Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Functional damage of mitochondria and chloroplasts under stress contributes to reactive oxygen species (ROS) induced cell death. A high percentage of cell mortality during microspore culture is a limiting factor in haploid and doubled haploid plant production. In the present study, we studied the contribution of dimethyl tyrosine (DMT) conjugated short peptides to microspore embryogenesis. These DMT-peptides, which are known to translocate to subcellular targets and scavenge ROS, mitigate the effect oxidative stress plays on microspore viability and embryogenesis. The number of viable microspores was significantly higher in the presence of SS-31 and caspase-3-inhibitor (Ac-DEVD-CHO). In particular, the total number of green plant regeneration was increased by 42 % in the presence of SS-02, and by 55 % in the presence of SS-31, in triticale. Conversely, lower caspase-3-like activities were observed in the presence of SS-31 and Ac-DEVD-CHO, and intracellular ROS was reduced in the presence of SS-31, supporting the involvement of SS-31 in reducing microspore cell death by mitigating ROS and caspase-3-like activity. This study further supports the concept that antioxidant conjugated peptides offer a useful strategy for reducing ROS in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464

    Article  CAS  Google Scholar 

  • Asif M, Eudes F, Goyal A, Amundsen EJ, Randhawa HS, Spancer DM (2013) Organelle antioxidants improve microspore embryogenesis in wheat and triticale. In Vitro Cell Dev Biol Plant 49:489–497

    Article  CAS  Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240. doi:10.1093/jxb/ert375

    Article  CAS  PubMed  Google Scholar 

  • Eudes F, Amundsen E (2005) Isolated microspore culture of Canadian 6x triticale cultivars. Plant Cell Tissue Organ Cult 82:233–241

    Article  CAS  Google Scholar 

  • Fortes AM, Costa J, Santos F, Segui-Simarro JM, Palme K, Altabella T, Tiburcio AF, Pais MS (2011) Arginine decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop. Plant signal behav 6(2):258–269

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goyal RK, Hancock RE, Mattoo AK, Misra S (2013) Expression of an engineered heterologous antimicrobial peptide in potato alters plant development and mitigates normal abiotic and biotic responses. PLoS One 8(10):e77505. doi:10.1371/journal.pone.0077505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halasi M, Gartel AL (2013) FOX(M1) news–it is cancer. Mol Cancer Ther 12(3):245–254. doi:10.1158/1535-7163.mct-12-0712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen G (2000) Evidence for agrobacterium-induced apoptosis in maize cells. Mol Plant Microbe Interact 13(6):649–657. doi:10.1094/mpmi.2000.13.6.649

    Article  CAS  PubMed  Google Scholar 

  • Hazell AS, Wang C (2005) Downregulation of complexin I and complexin II in the medial thalamus is blocked by N-acetylcysteine in experimental Wernicke’s encephalopathy. J Neurosci Res 79(1–2):200–207. doi:10.1002/jnr.20278

    Article  CAS  PubMed  Google Scholar 

  • Herouart D, Van Montagu M, Inze D (1994) Developmental and environmental regulation of the Nicotiana plumbaginifolia cytosolic Cu/Zn-superoxide dismutase promoter in transgenic tobacco. Plant Physiol 104(3):873–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776. doi:10.1146/annurev.biochem.77.061606.161055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacquard C, Mazeyrat-Gourbeyre F, Devaux P, Boutilier K, Baillieul F, Clement C (2009) Microspore embryogenesis in barley: anther pre-treatment stimulates plant defence gene expression. Planta 229(2):393–402. doi:10.1007/s00425-008-0838-6

    Article  CAS  PubMed  Google Scholar 

  • Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. Faseb J 17(13):1972–1974. doi:10.1096/fj.03-0240fje

    CAS  PubMed  Google Scholar 

  • Kreslavski VD, Los DA, Allakhverdiev SI, Kuznetsov VV (2012) Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59(2):141–154. doi:10.1134/S1021443712020057

    Article  CAS  Google Scholar 

  • Krieger-Liszkay A, Trebst A (2006) Tocopherol is the scavenger of singlet oxygen produced by the triplet states of chlorophyll in the PSII reaction centre. J Exp Bot 57(8):1677–1684. doi:10.1093/jxb/erl002

    Article  CAS  PubMed  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker D, Loerz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotechnol J 4(2):251–261. doi:10.1111/j.1467-7652.2005.00178.x

    Article  CAS  PubMed  Google Scholar 

  • Lam E, del Pozo O (2000) Caspase-like protease involvement in the control of plant cell death. Plant Mol Biol 44(3):417–428

    Article  CAS  PubMed  Google Scholar 

  • Mahmudi-Azer S, Lacy P, Bablitz B, Moqbel R (1998) Inhibition of nonspecific binding of fluorescent-labelled antibodies to human eosinophils. J Immunol Methods 217(1–2):113–119

    Article  CAS  PubMed  Google Scholar 

  • Maraschin SF, Gaussand G, Pulido A, Olmedilla A, Lamers GE, Korthout H, Spaink HP, Wang M (2005) Programmed cell death during the transition from multicellular structures to globular embryos in barley androgenesis. Planta 221(4):459–470. doi:10.1007/s00425-004-1460-x

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498. doi:10.1016/j.tplants.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (1997) Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 15(8):326–330

  • Oleszczuk S, Sowa S, Zimny J (2004) Direct embryogenesis and green plant regeneration from isolated microspores of hexaploid triticale (x Triticosecale Wittmack) cv. Bogo. Plant Cell Rep 22(12):885–893. doi:10.1007/s00299-004-0796-9

    Article  CAS  PubMed  Google Scholar 

  • Poljsak B (2011) Strategies for reducing or preventing the generation of oxidative stress. Oxidative Med Cell Longev 2011:194586. doi:10.1155/2011/194586

    CAS  Google Scholar 

  • Qanungo S, Wang M, Nieminen AL (2004) N-Acetyl-l-cysteine enhances apoptosis through inhibition of nuclear factor-kappaB in hypoxic murine embryonic fibroblasts. J Biol Chem 279(48):50455–50464. doi:10.1074/jbc.M406749200

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15(3):249–256. doi:10.1007/s10495-009-0447-2

    Article  CAS  PubMed  Google Scholar 

  • Reddy TP, Manczak M, Calkins MJ, Mao P, Reddy AP, Shirendeb U, Park B, Reddy PH (2011) Toxicity of neurons treated with herbicides and neuroprotection by mitochondria-targeted antioxidant SS31. Int J Environ Res Public Health 8(1):203–221. doi:10.3390/ijerph8010203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez-Serrano M, Barany I, Prem D, Coronado MJ, Risueno MC, Testillano PS (2012) NO, ROS, and cell death associated with caspase-like activity increase in stress-induced microspore embryogenesis of barley. J Exp Bot 63(5):2007–2024. doi:10.1093/jxb/err400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roldan-Arjona T, Ariza RR (2009) Repair and tolerance of oxidative DNA damage in plants. Mutat Res 681(2–3):169–179. doi:10.1016/j.mrrev.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  • Shariatpanahi ME, Bala U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Sinha RK, Komenda J, Knoppova J, Sedlarova M, Pospisil P (2012) Small CAB-like proteins prevent formation of singlet oxygen in the damaged photosystem II complex of the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Environ 35(4):806–818. doi:10.1111/j.1365-3040.2011.02454

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyam NC, Kasha KJ (1975) Chromosome doubling of barley haploids by nitrous oxide and colchicine treatments. Can J Genet Cytol 17:573–578

  • Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8(2):E277–E283. doi:10.1208/aapsj080232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996) Efficient microspore embryogenesis in wheat: Triticum aestivum L induced by starvation at high temperature. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Trabulo S, Cardoso AL, Mano M, Pedroso dL MC (2010) Cell-penetrating peptides mechanisms of cellular uptake and generation of delivery systems. Pharmaceuticals 3:961–993

    Article  CAS  PubMed Central  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6(4):961–967

    CAS  PubMed  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 cells en route to heat shock-induced cell death. Plant Physiol 141(1):208–219. doi:10.1104/pp.106.078683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390. doi:10.1104/pp.106.078295

    Article  PubMed Central  PubMed  Google Scholar 

  • Wright SN, Wang SY, Kallen RG, Wang GK (1997) Differences in steady-state inactivation between Na channel isoforms affect local anesthetic binding affinity. Biophys J 73(2):779–788. doi:10.1016/s0006-3495(97)78110-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wrobel J, Barlow PW, Gorka K, Nabialkowska D, Kurczynska EU (2011) Histology and symplasmic tracer distribution during development of barley androgenic embryos. Planta 233(5):873–881. doi:10.1007/s00425-010-1345-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wurschum T, Tucker MR, Reif JC, Maurer HP (2012) Improved efficiency of doubled haploid generation in hexaploid triticale by in vitro chromosome doubling. BMC Plant Biol 12:109. doi:10.1186/1471-2229-12-109

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu Q, Zhang L (2009) Plant caspase-like proteases in plant programmed cell death. Plant signal behav 4(9):902–904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav DK, Kruk J, Sinha RK, Pospisil P (2010) Singlet oxygen scavenging activity of plastoquinol in photosystem II of higher plants: electron paramagnetic resonance spin-trap** study. Biochim Biophys Acta 1797(11):1807–1811. doi:10.1016/j.bbabio.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  • Zadok JC, Chang TT, Konzak FC (1974) A decimal code for growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH (2003) Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther 304(1):425–432. doi:10.1124/jpet.102.040147

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690. doi:10.1074/jbc.M402999200

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Moore AN, Clifton GL, Dash PK (2005) Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res 82(4):499–506. doi:10.1002/jnr.20649

    Article  CAS  PubMed  Google Scholar 

  • Żur I, Dubas E, Krzewska M, Waligorski P, Dziurka M, Janowiak F (2015) Hormonal requirements for effective induction of microspore embryogenesis in triticale (3 Triticosecale Wittm.) anther cultures. Plant Cell Rep 34:47–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Żur I, Dubas E, Krzewska M, Janowiak F, Hura K, Pociecha E, Bączek-Kwinta R, Płażek A (2014) Antioxidant activity and ROS tolerance in triticale (× Triticosecale Wittm.) anthers affect the efficiency of microspore embryogenesis. Plant Cell Tissue Organ Cult. doi:10.1007/s11240-014-0515-3

    Google Scholar 

Download references

Acknowledgments

We thank Grant Duke for excellent technical assistance for confocal fluorescent microscopic studies and Eric Amundsen for excellent technical assistance for IMC and flow cytometer studies. The research reported in this paper was supported by Western Grains Research Foundation. We thank Ravinder K Goyal and Jordan Pepper for providing an English proof read.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Eudes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, R.K., Eudes, F. Dimethyl tyrosine conjugated peptide prevents oxidative damage and death of triticale and wheat microspores. Plant Cell Tiss Organ Cult 122, 227–237 (2015). https://doi.org/10.1007/s11240-015-0763-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0763-x

Keywords

Navigation