Ophthalmology of Hystricomorpha: Porcupines, Guinea Pigs, Degus, Chinchillas, and Relatives

  • Chapter
  • First Online:
Wild and Exotic Animal Ophthalmology
  • 1339 Accesses

Abstract

Hystricomorpha is an extremely diverse suborder of Rodentia containing the infraorders Ctenodactyloidea and Hystricognathi. Ctenodactyloidea consists of gundis and Laotian rock rats. Hystricognathi consists of the parvorders Phiomorpha and Caviomorpha. Interestingly, porcupines fall into both groups with Old World porcupines (Hystricidae) members of Phiomorpha, and New World porcupines (Erethizontidae) members of Caviomorpha. Phiomorpha tends to inhabit Africa, Asia, and Europe, while Caviomorpha predominately resides in South America with some species in North America and the Caribbean. Hystricomorphs range in size from the smallest mole rats at 3.5 in. (9 cm) in length and 1.2 oz. (30 g) in weight up to the largest rodent in the world, the capybara, at 48 in. (122 cm) in length and upwards of 150 pounds (68 kg) in weight. Similar to their size, there is great variability in their eyes. The globe of the naked mole rat, Heterocephalus glaber, measures 1.3 mm in diameter while the capybara, Hydrochoerus hydrochaeris, measures an astounding 22 mm. Ocular morphology is conserved within the suborder, but vision varies greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 71.68
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 94.94
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 126.59
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja Y, Baratz K, McLaren J et al (2012) Decreased corneal sensitivity and abnormal corneal nerves in Fuchs endothelial dystrophy. Cornea 31:1257–1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert M, Ansaruzzaman M, Faruque S et al (1991) Outbreak of keratoconjunctivitis due to Salmonella weltevreden in a guinea pig colony. J Clin Microbiol 29:2002–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allgoewer I, Ewringmann A, Pfleghaar S (1999) Lymphosarcoma with conjunctival manifestation in a guinea pig. Vet Ophthalmol 2:117–119

    Article  PubMed  Google Scholar 

  • Ansari-Mood M, Mehdi-Rajaei S, Sadjadi R et al (2016) Twenty-four-hour measurement of intraocular pressure in guinea pigs (Cavia porcellus). J Am Assoc Lab Anim Sci 55:95–97

    PubMed  PubMed Central  Google Scholar 

  • Ballard O (1937) The gross anatomy of Cavia cobaya with a comparative study of another hystricomorph rodent, Erethizon dorsatus. University of Kansas, Kansas

    Google Scholar 

  • Balthazar da Silveira C, Lima T, Crivelaro R et al (2018) Ophthalmic parameters in adult lowland paca (Cuniculus paca) raised in captivity. Vet Ophthalmol 21:42–47

    Article  CAS  PubMed  Google Scholar 

  • Basher T, Roberts S (1995) Ocular manifestations of diabetes mellitus: diabetic cataracts in dogs. Vet Clin North Am Small Anim Pract 25:661–676

    Article  CAS  PubMed  Google Scholar 

  • Beason R, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244

    Article  CAS  PubMed  Google Scholar 

  • Bercht B, Albuquerque L, Araujo A et al (2015) Specular microscopy to determine corneal endothelial cell morphology and morphometry in chinchillas (Chinchilla lanigera) in vivo. Vet Ophthalmol 18(1):137–142

    Article  PubMed  Google Scholar 

  • Bettelheim F, Churchill A, Zigler J (1997) On the nature of hereditary cataract in strain 13/N guinea pigs. Curr Eye Res 16:917–924

    Article  CAS  PubMed  Google Scholar 

  • Braekevelt C (1993) Fine structure of the tapetum lucidum of the paca (Cuniculus paca). Acta Anat 246:244–250

    Article  Google Scholar 

  • Brookhyser K, Aulerich R, Vomachka A (1977) Adaptation of the orbital venous sinus technique to the chinchilla (Chinchilla lanigera). Lab Anim Sci 27:251–254

    CAS  PubMed  Google Scholar 

  • Brown C, Donnelly T (2001) Cataracts and reduced fertility in Degus (Octodon degus). Lab Anim 30:25–26

    CAS  Google Scholar 

  • Brunschwig A (1928) A dermoid of the cornea in a guinea pig. Am J Pathol 4:371–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buttery R, Hinrichsen C, Weller W et al (1991) How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis Res 31:169–187

    Article  CAS  PubMed  Google Scholar 

  • Cafaro T, Ortiz S, Maldonado C et al (2009) The cornea of guinea pigs: structural and functional studies. Vet Ophthalmol 12:234–241

    Article  PubMed  Google Scholar 

  • Cantarella R, de Oliveira J, Dorbandt D et al (2017) Effects of topical flurbiprofen sodium, diclofenac sodium, ketorolac tromethamine and benzalkonium chloride on corneal sensitivity in normal dogs. Open Vet J 7:254–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrington S, Bedford P, Guillon J et al (1987) Polarized light biomicroscopic observation on the pre-corneal film, and the normal tear film of the dog. J Small Anim Pract 28:605–622

    Article  Google Scholar 

  • Castro J, López J, Becerra F (2010) Una nueva especie de Cu- niculus (Rodentia: Cuniculidae) de la cordillera Central de Colombia. Revista de la Asociación Colombiana de Ciencias Biológicas 22:122–131

    Google Scholar 

  • Catania K, Remple M (2002) Somatosensory cortex dominated by the representation of teeth in the naked mole-rat brain. Proc Natl Acad Sci USA 99:5692–5697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cei G (1946) Ortogenesi parallela e degradazione degli organi della vista negli spalacidi. Monit Zool Ital Firenze 55:69–84

    Google Scholar 

  • Cercignani M, Giulietti G, Dowell N et al (2017) Characterizing axonal myelination within the healthy population: a tract-by-tract map** of effects of age and gender on the fiber g-ratio. Neurobiol Aging 49:109–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Cernuda-Cernuda R, Garcia-Fernández J, Gordign M et al (2003) The eye of the African mole-rat Cryptomys anselli: to see or not to see? Eur J Neurosci 17:709–720

    Article  PubMed  Google Scholar 

  • Chavez A, Bozinovic F, Peichl L et al (2003) Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus Octodon (Rodentia): implications for visual ecology. Invest Ophthalmol Vis Sci 44:2290–2296

    Article  PubMed  Google Scholar 

  • Chiwitt C, Baines S, Mahoney P et al (2017) Ocular biometry by computed tomography in different dog breeds. Vet Ophthalmol 20:411–419

    Article  PubMed  Google Scholar 

  • Chomiak T, Hu B (2009) What is the optimal value of the g-ratio for myelinated fibers in the rat CNS? A theoretical approach. PLoS One 4:e7754

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark D, Clark R (2013) The effects of time, luminance, and high contrast targets: revisiting grating acuity in the domestic cat. Exp Eye Res 116:75–78

    Article  CAS  PubMed  Google Scholar 

  • Cooper G, Schiller AL (1975) Anatomy of the guinea pig. Harvard University Press, Cambridge, pp 369–389

    Google Scholar 

  • Coster M, Stiles J, Krohne S et al (2008) Results of diagnostic ophthalmic testing in healthy guinea pigs. J Am Vet Med Assoc 15:1825–1833

    Article  Google Scholar 

  • Cox P, Faulkes C, Bennett N (2020) Masticatory musculature of the African mole-rats (Rodentia:Bathyergidae). PeerJ 8:e8847

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossly D, Jackson A, Yates J et al (1998) Use of computed tomography to investigate cheek tooth abnormalities in chinchillas (Chinchilla lanigera). J Small Anim Pract 38:385–389

    Article  Google Scholar 

  • Datiles M, Fukui H (1989) Cataract prevention in diabetic Octodon degus with Pfizer’s sorbinil. Curr Eye Res 8:233–237

    Article  PubMed  Google Scholar 

  • DeSchaepdrijver L, Simoens P, Lauwers H et al (1989) Retinal vascular patterns in domestic animals. Res Vet Sci 47:34–42

    Article  CAS  Google Scholar 

  • Detwiler S (1949) The eye of the chinchilla (C. lanigera). J Morphol 84:123–144

    Article  CAS  PubMed  Google Scholar 

  • Di Y, Luo X, Qiao T et al (2017) Intraocular pressure with rebound tonometry and effects of topical intraocular pressure reducing medications in guinea pigs. Int J Ophthalmol 10:186–190

    PubMed  PubMed Central  Google Scholar 

  • Djeridane Y (1992) The Harderian gland of desert rodents: a histological and ultrastructural study. J Anat 180:465–480

    PubMed  PubMed Central  Google Scholar 

  • Doughty M (2016) Assessment of short-term variability in human spontaneous blink rate during video observation with or without head/chin support. Clin Exp Optom 99:135–141

    Article  PubMed  Google Scholar 

  • Duke-Elder S (1958) The eye in evolution, vol 1. Henry Kimpton, London, p 610, 672, 688

    Google Scholar 

  • Dwyer R, Darougar S, Monnickendam M (1983) Unusual features in the conjunctiva and cornea of the normal guinea-pig: clinical and histological studies. Br J Ophthalmol 67:737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebensperger L, Chesh A, Castro R et al (2011) Burrow limitations and group living in the communally rearing rodent Octodon degus. J Mammal 92:21–30

    Article  PubMed  Google Scholar 

  • Edwards M (1969) Congenital defects in guinea pigs: fetal resorptions, abortions, and malformations following induced hyperthermia during early gestation. Teratology 2:313–328

    Article  CAS  PubMed  Google Scholar 

  • Ewringmann A, Göbel T (1998) Diabetes mellitus bei Kaninchen, Meerschweinchen und Chinchilla. Kleintierpraxis 43:337–348

    Google Scholar 

  • Faghihi J, Rajaei S, Ansarimood M et al (2019) Conjunctival microflora in guinea pigs with and without conjunctivitis. J Exot Pet Med 30:65–68

    Article  Google Scholar 

  • Fernandez J, Dubielzig R (2013) Ocular comparative anatomy of the family Rodentia. Vet Ophthalmol 16(1):94–99

    Article  Google Scholar 

  • Gariboldi M, Inserra P, Lucero S et al (2019) Unexpected low genetic variation in the South American hystricognath rodent Lagostomus Maximus (Rodentia: Chinchillidae). PLoS One 14:e0221559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasser K, Fuchs-Baumgartinger A, Tichy A et al (2011) Investigations on the conjunctival goblet cells and on the characteristics of glands associated with the eye in the guinea pig. Vet Ophthalmol 14:26–40

    Article  PubMed  Google Scholar 

  • Ghawar W, Snoussi M, Salem S et al (2017) Morphometric variation and its relation to the eyes lens weight among three species of wild rodents in Tunisia. Int J Fauna Biol Stud 4:30–38

    Google Scholar 

  • Grahn B, Szentimrey D, Pharr J et al (1995) Ocular and orbital porcupine quills in the dog: a review and case series. Can Vet J 36:488–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith J, Sassani J, Bowman T et al (1988) Osseous choristoma of the ciliary body in guinea pigs. Vet Pathol 25:100–102

    Article  CAS  PubMed  Google Scholar 

  • Gull J, Steinmetz H, Clauss M et al (2009) Occurrence of cataracts and fatty liver in captive plain viscachas (Lagostomus maximus) in relation to diet. J Zoo Wild Med 40:652–658

    Article  Google Scholar 

  • Guy J, Ellis E, Kelley K et al (1989) Spectra of G ratio, myelin sheath thickness, and axon and fiber diameter in the guinea pig optic nerve. J Comp Neurol 287:446–454

    Article  CAS  PubMed  Google Scholar 

  • Hale M, Griesemer S, Fuller T (1994) Immobilization of porcupines with tiletamine hydrochloride and zolazepam hydrochloride (Telazol). J Wildl Dis 30:429–431

    Article  CAS  PubMed  Google Scholar 

  • Herrera E (1992) Growth and dispersal of capybaras (Hydrochaeris hydrochaeris) in the Llanos of Venezuela. J Zool 228:307–316

    Article  Google Scholar 

  • Hittmair K, Tichy A, Nell B (2014) Ultrasonography of the harderian gland in the rabbit, guinea pig, and chinchilla. Vet Ophthalmol 17:175–183

    Article  PubMed  Google Scholar 

  • Holmberg B (2018) Exotic pet and avian ophthalmology. In: Maggs D, Miller P, Ofri R (eds) Slatter’s fundamentals of veterinary ophthalmology, 6th edn. Elsevier, St. Louis, pp 503–505

    Google Scholar 

  • Holmberg B, Hollingsworth S, Osofsky A et al (2007) Taenia coenurus in the orbit of a chinchilla. Vet Ophthalmol 10:53–59

    Article  PubMed  Google Scholar 

  • Huchon D, Douzery E (2001) From the old world to the new world: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Mol Phylogenet Evol 20:238–251

    Article  CAS  PubMed  Google Scholar 

  • Hurley M, Deacon R, Beyer K et al (2018) The long-lived Octodon degus as a rodent drug discovery model for Alzheimer’s and other age-related diseases. Pharmacol Ther 188:36–44. https://doi.org/10.1016/j.pharmthera.2018.03.001

    Article  CAS  PubMed  Google Scholar 

  • Jacobs G, Deegan J (1994) Spectral sensitivity, photopigments, and color vision in the guinea pig (Cavia porcellus). Behav Neurosci 108:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Jacobs G, Calderone J, Fenwick J et al (2003) Visual adaptations in a diurnal rodent, Octodon degus. J Comp Physiol A 189:347–361

    Article  CAS  Google Scholar 

  • Jekl V, Kauptman K, Knotek Z (2011) Diseases in pet degus: a retrospective study in 300 animals. J Sm Anim Pract 52:107–112

    Article  CAS  Google Scholar 

  • Jnawali A, Beach K, Ostrin L (2018) In vivo imaging of the retina, choroid, and optic nerve head in guinea pigs. Curr Eye Res 43:1006–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Kador P, Webb T, Bras D et al (2010) Topical kinostatTM ameliorates the clinical development and progression of cataracts in dogs with diabetes mellitus. Vet Ophthalmol 13:363–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korb D, Greiner J, Glonek J et al (1998) Human and rabbit lipid layer and interference pattern observations. Adv Exp Med Biol 438:305–308

    Article  CAS  PubMed  Google Scholar 

  • Kosegarten D, Maher T (1978) Use of guinea pigs as model to study galactose-induced cataract formation. J Pharm Sci 67:1478–1479

    Article  CAS  PubMed  Google Scholar 

  • Lázár G (1983) Retinal projections of the pigmented guinea pig. Acta Biol Hung 34:207–213

    PubMed  Google Scholar 

  • Ledesma K, Werner F, Spotorno A et al (2009) A new species of mountain viscacha (Chinchillidae: Lagidium meyen) from the Ecuadorean Andes. Zootaxa 2126:41–57

    Article  Google Scholar 

  • Lima L, Montiani-Ferreira F, Tramontin M et al (2010) The chinchilla eye: morphologic observations, echobiometric findings and reference values for selected ophthalmic diagnostic tests. Vet Ophthalmol 13(Suppl 1):14–25

    Article  PubMed  Google Scholar 

  • Lutz-Wohlgroth L, Becker A, Brugnera E et al (2006) Chlamydiales in guinea-pigs and their zoonotic potential. J Vet Med A Physiol Clin Med 53:185–193

    Article  CAS  Google Scholar 

  • Maier W, Schrenk F (1987) The hystricomorphy of the Bathyergidae, as determined from ontogenetic evidence. Zeitschrift für Säugetierkunde 52:156–164

    Google Scholar 

  • McMullen C, Anrade F, Crish S (2010) Underdeveloped extraocular muscles in the naked mole-rat (Heterocephalus glaber). Anat Rec (Hoboken) 293:918–923

    Article  PubMed  Google Scholar 

  • Merindano M, Costa J, Canals M et al (2002) A comparative study of Bowman’s layer in some mammals: relationships with other constituent corneal structures. Eur J Anat 6:133–139

    Google Scholar 

  • Miles R, Ratoosh P, Meyer D (1956) Absence of color vision in guinea pig. J Neurophysiol 19:254–258

    Article  CAS  PubMed  Google Scholar 

  • Mills S, Catania K (2004) Identification of retinal neurons in a regressive rodent eye (the naked mole rat). Vis Neurosci 21:107–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Montgelard C, Forty E, Arnal V et al (2008) Suprafamilial relationships among Rodentia and the phylogenetic effect of removing fast-evolving nucleotides in mitochondrial, exon and intron fragments. BMC Evol Biol 8:321

    Article  PubMed  PubMed Central  Google Scholar 

  • Montiani-Ferreira F, Mattos B, Russ H (2006) Reference values for selected ophthalmic diagnostic tests of the ferret (Mustela putorius furo). Vet Ophthalmol 9:209–213

    Article  PubMed  Google Scholar 

  • Montiani-Ferreira F et al (2008) The capybara eye: clinical tests, anatomic and biometric features. Vet Ophthalmol 11:386–394

    Article  PubMed  Google Scholar 

  • Müller K, Eule J (2014) Ophthalmic disorders observed in pet chinchillas (Chinchilla lanigera). J Exotic Pet Med 23:201–205

    Article  Google Scholar 

  • Müller K, Mauler D, Eule J (2010) Reference values for selected ophthalmic diagnostic tests and clinical characteristics of chinchilla eyes (Chinchilla lanigera). Vet Ophthalmol 13:29–34

    Article  PubMed  Google Scholar 

  • Mumcuoglu T, Ozge G, Soykut B et al (2015) An animal model (guinea pig) of ocular siderosis: histopathology, pharmacology, and electrophysiology. Curr Eye Res 40:314–320

    Article  CAS  PubMed  Google Scholar 

  • Murphy JC et al (1980) Spontaneous lesions in the degu. In: Montali R, Migaki G (eds) The comparative pathology of zoo animals. Smithsonian Institution Press, Washington DC, pp 437–444

    Google Scholar 

  • Murphy E, Garone M, Tashayyod D et al (1986) Innervation of extraocular muscles in the rabbit. J Comp Neurol 254:78–90

    Article  CAS  PubMed  Google Scholar 

  • Murray E (1964) Guinea pig inclusion conjunctivitis virus: I. Isolation and identification as a member of the psittacosis-lymphogranuloma-trachoma group. J Infect Dis 114:1–12

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa Y, Oka M, Takehana M (2017) Model for studying anti-allergic drugs for allergic conjunctivitis in animals. Open Med (Wars) 12:231–238

    Article  CAS  PubMed  Google Scholar 

  • Nascimento E, Cavalcante J, Cavalcante J et al (2010a) Retinal afferents to the thalamic mediodorsal nucleus in the rock cavy (Kerodon rupestris). Neurosci Lett 7:38–43

    Article  Google Scholar 

  • Nascimento E, Souza A, Duarte R et al (2010b) The suprachiasmatic nucleus and the intergeniculate leaflet in the rock cavy (Kerodon rupestris): retinal projections and immunohistochemical characterization. Brain Res 1320:34–46

    Article  CAS  PubMed  Google Scholar 

  • NÄ›mec P, Cveková P, Benada O et al (2008) The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res Bull 75:356–364

    Article  PubMed  Google Scholar 

  • Nicolle C, Manceaux L (1908) Sur une infection a corps de Leishman (ou organismes voisons) du gondi. C R Acad Sci 147:736

    Google Scholar 

  • Nikitina N, Kidson S (2014) Eye development in the Cape dune mole rat. Dev Genes Evol 224:107–117

    Article  CAS  PubMed  Google Scholar 

  • Nikitina N, Maughan-Brown B, O’Riain M et al (2004) Post-natal development of the eye in the naked mole rat (Heterocephalus glaber). Anat Rec 277A:317–337

    Article  Google Scholar 

  • Ninomiya H, Inomata T (2005) Microvasculature of the hamster eye: scanning electron microscopy of vascular corrosion casts. Vet Ophthalmol 8:7–12

    Article  PubMed  Google Scholar 

  • Ninomiya H, Kuno H (2001) Microvasculature of the rat eye: scanning electron microscopy of vascular corrosion casts. Vet Ophthalmol 4:55–59

    Article  CAS  PubMed  Google Scholar 

  • Nogradi A, Szentgáli Z, Battay M et al (2020) Measurement of tear production and establishment of reference values in guinea pigs (Cavia porcellus) using a modified Schirmer tear test. Vet Rec 186:321

    Article  PubMed  Google Scholar 

  • Oelschläger H, Nakamura M, Herzog M et al (2000) Visual system labeled by c-Fos immunohistochemistry after light exposure in the ‘blind’ subterranean Zambian mole-rat (Cryptomys anselli). Brain Behav Evol 55:209–220

    Article  PubMed  Google Scholar 

  • Okanoya K, Tokimoto N, Kumazawa N et al (2008) Tool-use training in a species of rodent: the emergency of an optimal motor strategy and functional understanding. PLoS One 3:e1860. https://doi.org/10.1371/journal.pone.0001860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira F, Nascimento-Júnior E, Cavalcante J et al (2018) Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon Rupestris) retina. J Chem Neuroanat 90:57–69

    Article  CAS  PubMed  Google Scholar 

  • Opazo J, Soto-Gamboa M, Bozinovic F (2004) Blood glucose concentration in caviomorph rodents. Comp Biochem Physiol A Mol Integr Physiol 137:57–64

    Article  PubMed  Google Scholar 

  • Opazo J, Palma R, Melo F et al (2005) Adaptive evolution of the insulin gene in caviomorph rodents. Mol Biol Evol 22:1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Ostrin L, Wildsoet C (2016) Optic nerve head and intraocular pressure in the guinea pig eye. Exp Eye Res 146:7–16

    Article  CAS  PubMed  Google Scholar 

  • Ozawa S, Mans C, Szabo Z et al (2017) Epidemiology of bacterial conjunctivitis in chinchillas (Chinchilla lanigera): 49 cases (2005–2015). J Small Anim Pract 58:238–245

    Article  CAS  PubMed  Google Scholar 

  • Padilla-Carlin D, McMurray D, Hickey A (2008) The guinea pig as a model of infectious disease. Comp Med 58:324–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palanca-Castan N, Harcha P, Neira D et al (2020) Chromatic pupillometry for the characterization of the pupillary light reflex in Octodon degus. Exp Eye Res 190:107866

    Article  CAS  PubMed  Google Scholar 

  • Parry J, Bowmaker J (2002) Visual pigment coexpression in guinea pig cones: a microspectrophotometric study. Invest Ophthalmol Vis Sci 43:1662–1665

    PubMed  Google Scholar 

  • Patterson B, Upham N (2014) A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica). Zool J Linnean Soc 172:942–963

    Article  Google Scholar 

  • Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A Discov Mol Cell Evol Biol 287:1001–1012

    Article  PubMed  Google Scholar 

  • Peichl L, NÄ›mec P, Burda H (2004) Unusual cone and rod properties in subterranean African mole-rats (Rodentia, Bathyergidae). E J Neurosci 19:1545–1558

    Article  Google Scholar 

  • Peiffer R, Johnson R (1980) Clinical ocular findings in a colony of chinchillas (Chinchilla lanigera). Lab Anim 14:331–335

    Article  CAS  PubMed  Google Scholar 

  • Pereira F, Bete S, Inamassu L et al (2020) Anatomy of the skull in the capybara (Hydrochoerus hydrochaeris) using radiography and 3D computed tomography. Anat Histol Embryol 49:317–324

    Article  PubMed  Google Scholar 

  • Quilliam T (1966) The problem of vision in the ecology of Talpa europaea. Exp Eye Res 5:63–78

    Article  CAS  PubMed  Google Scholar 

  • Quinton J, Ollivier F, Dally C (2013) A case of well-differentiated palpebral liposarcoma in a guinea pig (Cavia porcellus). Vet Ophthalmol 16:155–159

    Article  PubMed  Google Scholar 

  • Racine J, Behn D, Simard E et al (2003) Spontaneous occurrence of a potentially night blinding disorder in guinea pigs. Doc Ophthalmol 107:59–69

    Article  PubMed  Google Scholar 

  • Racine J, Joly S, Lachapelle P (2011) Longitudinal assessment of retinal structure and function reveals a rod-cone degeneration in a guinea pig model initially presented as night blind. Doc Ophthalmol 123:1–19

    Article  PubMed  Google Scholar 

  • Ramírez-Chaves H, Solari S (2014) On the availability of the name Cuniculus hernandezi Castro, López, and Becerra, 2010 (Rodentia: Cuniculidae). Actual Biol 36:59–62

    Article  Google Scholar 

  • Rank R, Bowlin A, Tormanen K et al (2012) Effect of inflammatory response on in vivo competition between two chlamydial variants in the guinea pig model of inclusion conjunctivitis. Infect Immun 80:612–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao K, Leveque C, Pflugfelder S (2010) Corneal nerve regeneration in neurotrophic keratopathy following autologous plasma therapy. Br J Ophthalmol 94:584–591

    Article  PubMed  Google Scholar 

  • Rasia L, Candela A (2019) Upper molar morphology, homologies and evolutionary patterns of chinchilloid rodents (Mammalia, Caviomorpha). J Anat 234:50–65

    Article  PubMed  Google Scholar 

  • Redford KH, Eisenberg JF (1992) Mammals of the neotropics. The southern cone. The University of Chicago Press, Chicago, p 435

    Google Scholar 

  • Reymond L, Cook M (1984) Relation between simultaneous spatial-discrimination thresholds and luminance in man. Behav Brain Res 14:51–59

    Article  CAS  PubMed  Google Scholar 

  • Robin M, Papin A, Regnier A et al (2020) Corneal anesthesia associated with topical application of 2% lidocaine nonophthalmic gel to healthy canine eyes. Vet Ophthalmol 23:560–566

    Article  CAS  PubMed  Google Scholar 

  • Rocha F, Ahnelt P, Peichl L et al (2009) The topography of cone photoreceptors in the retina of a diurnal rodent, the agouti (Dasyprocta Aguti). Vis Neurosci 26:167–175

    Article  PubMed  Google Scholar 

  • Rushton W (1934) A physical analysis of the relation between threshold and interpolar length in the electric excitation of the medullated nerve. J Physiol 82:332–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sáez I, Friedlander M (2009) Synaptic output of individual layer 4 neurons in guinea pig visual cortex. J Neurosci 29:4930–4944

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandalon S, Boykova A, Ross M et al (2019) Contrary to popular belief, chinchillas do not have a pure rod retina. Vet Ophthalmol 22:93–97

    Article  CAS  PubMed  Google Scholar 

  • Sandmeyer L, Parker D, Grahn B (2011) Diagnostic ophthalmology. Can Vet J 52:801–802

    PubMed  PubMed Central  Google Scholar 

  • Schäffer E, Pfleghaar S (1995) Secondary open angle glaucoma from osseous choristoma of the ciliary body in guinea pigs. Tierarztl Prax 23:410–414

    PubMed  Google Scholar 

  • Shafrir E, Ziv E, Kalman R (2006) Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J 47:212–224

    Article  CAS  PubMed  Google Scholar 

  • Shimoyama M, Smith J, De Pons J et al (2016) The chinchilla research resource database: resource for an otolaryngeal disease model. Database 2016:baw073

    Article  PubMed  PubMed Central  Google Scholar 

  • Silveira L, Picanço-Dinz C, Oswaldo-Cruz. (1989) Distribution and size of ganglion cells in the retinae of large Amazon rodents. Vis Neurosci 2:221–2335

    Article  CAS  PubMed  Google Scholar 

  • Snyder K, Lewin A, Mans C et al (2017) Tonometer validation and intraocular pressure reference values in the normal chinchilla (Chinchilla lanigera). Vet Ophthalmol 21:4–9

    Article  PubMed  Google Scholar 

  • Steffen J, Krohn M, Paarmann K et al (2016) Revisiting rodent models: Octodon degus as Alzheimer’s disease model? Acta Neuropathol Commun 4:91

    Article  PubMed  PubMed Central  Google Scholar 

  • Stone J (1983) Parallel processing in the visual system: the classification of retinal ganglion cells and its impact on the neurobiology of vision. Plenum Press, New York

    Book  Google Scholar 

  • Stone S, Amsbaugh D (1984) Congential cataracts in strain 13 guinea pigs: an autosomal dominant human model. Invest Ophthalmol Vis Sci 25:606–607

    CAS  PubMed  Google Scholar 

  • Stuart C, Stuart C (2016) Mammals of North Africa and the Middle East. Bloomsbury Publishing Plc, London, p 105

    Google Scholar 

  • Sueki H, Kligman A (2003) Cutaneous toxicity of chemical irritants on hairless guinea pigs. J Dermatol 30:859–870

    Article  CAS  PubMed  Google Scholar 

  • Sueki H, Gammal C, Kudoh K et al (2000) Hairless guinea pig skin: anatomical basis for studies of cutaneous biology. Eur J Dermatol 10:357–364

    CAS  PubMed  Google Scholar 

  • Szabadfi K, Estrada C, Fernandez-Villalba E et al (2015) Retinal aging in the diurnal Chilean rodent (Octodon degus): histological, ultrastructural and neurochemical alterations of the vertical information processing pathway. Front Cell Neurosci 9:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Tavares-Somma A, Seabra N, Moore B et al (2017) The eye of the Azara’s agouti (Dasyprocta azarae): morphological observations and selected ophthalmic diagnostic tests. J Zoo Wildl Med 48:1108–1119

    Article  PubMed  Google Scholar 

  • Tolivia D, Antolin I, Menendez-Pelaez A et al (1992) Lymphoid cells in the harderian gland of the rodent Octodon degus. Anat Rec 234:438–442

    Article  CAS  PubMed  Google Scholar 

  • Trost K, Skalichy M, Nell B (2007) Schirmer tear test, phenol red thread tear test, eye blink frequency and corneal sensitivity in the guinea pig. Vet Ophthalmol 10:143–146

    Article  PubMed  Google Scholar 

  • Ueda K, Ueda A, Ozaki K (2019) Pleomorphic iridociliary adenocarcinoma with metastasis to the cervical lymph node in a chinchilla (Chinchilla lanigera). J Vet Med Sci 81:193–196

    Article  CAS  PubMed  Google Scholar 

  • Van Daele PAAG, Verheyen E, Brunain M et al (2007) Cytochrome b sequence analysis reveals differential molecular evolution in African mole-rats of the chromosomally hyperdiverse genus Fukomys (Bathyergidae, Rodentia) from the Zambezian region. Mol Phylogenet Evol 45(1):142–157

    Article  PubMed  Google Scholar 

  • Vaughan T, Ryan J, Czaplewski N (2015) Mammalogy, 6th edn. Jones & Bartlett Learning, Burlington, p 221

    Google Scholar 

  • Vega-Zuniga T, Medina F, Fredes F et al (2013) Does nocturnality drive binocular vision? Octodontine rodents as a case study. PLoS One 8:e84199

    Article  PubMed  PubMed Central  Google Scholar 

  • Voigt S, Fuchs-Baumgartinger A, Egerbacher M et al (2012) Investigations on the conjunctival goblet cells and the characteristics of the glands associated with the eye in chinchillas (Chinchilla lanigera). Vet Ophthalmol 15:333–344

    Article  PubMed  Google Scholar 

  • vonSallmann L, Reid M, Grimers P et al (1959) Tryptophan-deficiency cataract in guinea pigs. AMA Arch Ophthalmol 62:662–672

    Article  Google Scholar 

  • Wagner J, Manning P (1976) The biology of the guinea pig. Academic Press, New York, p 113

    Google Scholar 

  • Walde I, Nell B (2008) Meerschweinchen. In: Walde I, Nell B, Schäffer EH, Köstlin R (eds) Augenheilkunde-Lehrbuch und Atlas Hund, Latze, Kaninchen und Meerschweinchen, Chapter 22, 3rd edn. Schattauer GmbH, Stuttgart, pp 761–764

    Google Scholar 

  • Wappler O, Allgoewer I, Schaeffer E (2002) Conjunctival dermoid in two guinea pigs: a case report. Vet Ophthalmol 5:245–248

    Article  PubMed  Google Scholar 

  • Weale R (1988) Age and the transmittance of the human crystalline lens. J Physiol 395:577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner R, Begall S, Burda H (2006a) Magnetic compass in the cornea: local anesthesia impairs orientation in a mammal. J Exp Biol 209:4747–4750

    Article  PubMed  Google Scholar 

  • Wegner R, Begall S, Burda H (2006b) Light perception in ‘blind’ subterranean Zambian mole-rats. Anim Behav 72:1021–1024

    Article  Google Scholar 

  • Wei X, Markoulli M, Zhao Z et al (2013) Tear film break-up time in rabbits. Clin Exp Optom 96:70–75

    Article  PubMed  Google Scholar 

  • White J, Cinotti A (1972) Streptozotocin-produced cataracts in rats. Investig Ophthalmol 11:56–57

    CAS  Google Scholar 

  • Wieser B, Tichy A, Nell B (2013) Correlation between corneal sensitivity and quantity of reflex tearing in cows, horses, goats, sheep, dogs, cats, rabbits, and guinea pigs. Vet Ophthalmol 16:251–262

    Article  PubMed  Google Scholar 

  • Williams D, Gum G (2013) Laboratory animal ophthalmology. In: Gelatt K, Gilger B, Kern T (eds) Veterinary ophthalmology, 5th edn. John Wiley and Sons, Ames, pp 1705–1709

    Google Scholar 

  • Williams D, Sullivan A (2010) Ocular disease in the guinea pig (Cavia porcellus): a survey of 1000 animals. Vet Ophthalmol 13(Suppl 1):52–62

    Google Scholar 

  • Wood J (1861) The illustrated natural history: class mammalia. Routledge, Warne, and Routledge, London, p 579

    Google Scholar 

  • Wu D, Henriksen M, Grant K et al (2020) Ocular findings and selected ophthalmic diagnostic tests in a group of young commercially available Guinea and Skinny pigs (Cavia porcellus). Vet Ophthalmol 23:234–244

    Article  CAS  PubMed  Google Scholar 

  • **ao H, Fan Z, Tian X et al (2014) Comparison of form-deprived myopia and lens-induced myopia in guinea pigs. Int J Ophthalmol 7:245–250

    PubMed  PubMed Central  Google Scholar 

  • Zhou X, Qu J, **e R et al (2006) Normal development of refractive state and ocular dimensions in guinea pigs. Vis Res 46:2815–2823

    Article  PubMed  Google Scholar 

  • Zhou J, Ge S, Gu P et al (2011) Microdissection of guinea pig extraocular muscles. Exp Ther Med 2:1183–1185

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Stevenson D, Schechter J et al (2003) Lacrimal histopathology and ocular surface disease in a rabbit model of autoimmune dacryoadenitis. Cornea 22:25–32

    Article  PubMed  Google Scholar 

  • Zúñiga H, Pinto-Nolla M, Hernandez-Camacho J et al (2002) Revisión taxonómia de lase species del género Cavia (Rodentia: Caviidae) en Colombia. Acta Zool Mex 87:111–123

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holmberg, B.J. (2022). Ophthalmology of Hystricomorpha: Porcupines, Guinea Pigs, Degus, Chinchillas, and Relatives. In: Montiani-Ferreira, F., Moore, B.A., Ben-Shlomo, G. (eds) Wild and Exotic Animal Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-81273-7_18

Download citation

Publish with us

Policies and ethics

Navigation