Log in

Visual adaptations in a diurnal rodent, Octodon degus

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The degu (Octodon degus) is a diurnal rodent, native to Chile. Basic features of vision and visual organization in this species were examined in a series of anatomical, electrophysiological and behavioral experiments. The lens of the degu eye selectively absorbs short-wavelength light and shows a progressive increase in optical density as a function of age. Electroretinograms recorded using a flicker-photometric procedure reveal three spectral mechanisms: a rod with peak sensitivity of about 500 nm and two types of cone having respective spectral peaks of about 362 nm and 507 nm. Opsin antibody labeling was used to determine the retinal distributions of the three receptor types. A total of about one-third of the approximately 9 million photoreceptors of the degu retina are cones with the two types (507 nm/362 nm) represented in a ratio of about 13:1. The contributions to vision of all three receptor types were examined in a series of behavioral experiments. A consistent feature of both the electrophysiological and behavioral results is that relatively high levels of light adaptation are required to effect the full transition from rod-based to cone-based vision. In behavioral tests degus were shown to be able to make color discriminations between ultraviolet and visible lights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13. 
Fig. 14.
Fig. 15.

Similar content being viewed by others

Abbreviations

ERG:

electroretinogram

M:

middle-wavelength-sensitive

S:

short-wavelength-sensitive

UV:

ultraviolet

References

  • Ahnelt PK, Kolb H (2000) The mammalian photoreceptor mosaic-adaptive design. Prog Ret Eye Res 19:711–770

    Google Scholar 

  • Bowmaker JK (1998) Evolution of colour vision in vertebrates. Eye 12:541–547

    Google Scholar 

  • Calderone JB, Fenwick JA, Jacobs GH (2001) Photoreceptors, photopigments and visual capacities of a diurnal rodent, Octodon degus. Invest Ophthal Vis Sci 42:S178

    Google Scholar 

  • Chu MI, Zack DJ, Wang Y, Nathans J (1994) Murine and bovine blue cone pigment genes: cloning and characterization of the S family of visual pigments. Genomics 21:440–443

    Google Scholar 

  • Douglas RH, Marshall NJ (1999) A review of vertebrate and invertebrate ocular filters. In: SN Archer, MBA Djamgoz, ER Loew, JC Partridge, S Vallerga (eds) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht, pp 95–162

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63:1–27

    Google Scholar 

  • Fasick JI, Applebury ML, Oprian DD (2002) Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochemistry 41:6860–6865

    Google Scholar 

  • Fulk GW (1976) Notes on the activity, reproduction and social behaviour of Octodon degus. J Mammal 57:495–505

    Google Scholar 

  • Garcia-Allegue R, Lax P, Madariaga AM, Madrid JA (1999) Locomotor and feeding activity rhythms in a light-entrained diurnal rodent, Octodon degus. Am J Physiol 267:R523–R531

    Google Scholar 

  • Goldsmith TH (1994) Ultraviolet receptors and color vision: evolutionary implications and a dissonance of paradigms. Vis Res 34:1479–1487

    CAS  PubMed  Google Scholar 

  • Gorgels TGMF, Norren D van (1992) Spectral transmittance of the rat lens. Vision Res 32:1509–1512

    CAS  PubMed  Google Scholar 

  • Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528

    CAS  PubMed  Google Scholar 

  • Hollins M, Alpern M (1973) Dark adaptation and visual pigment regeneration. J Gen Physiol 62:430–477

    CAS  PubMed  Google Scholar 

  • Honkavaara J, Koivula M, Korpimaki E, Siitari H, Viitala J (2002) Ultraviolet vision and foraging in terrestrial vertebrates. Oikos 98:505–511

    Article  Google Scholar 

  • Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S (2001) Vision in the ultraviolet. Cell Mol Life Sci 58:1583–1598

    CAS  PubMed  Google Scholar 

  • Hunt S, Cuthill IC, Bennett ATD, Church SC, Partridge JC (2001) Is the ultraviolet waveband a special communication channel in avian mate choice? J Exp Biol 204:2499–2507

    CAS  PubMed  Google Scholar 

  • Hut RA, Scheper A, Daan S (2000) Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light? J Comp Physiol A 186:707–715

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH (1983) Within-species variations in visual capacity among squirrel monkeys (Saimiri sciureus): sensitivity differences. Vision Res 23:239–248

    CAS  PubMed  Google Scholar 

  • Jacobs GH (1992) Ultraviolet vision in vertebrates. Am Zool 32:544–554

    Google Scholar 

  • Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471

    CAS  Google Scholar 

  • Jacobs GH, Neitz J (1987) Inheritance of color vision in a New World monkey (Saimiri sciureus). Proc Natl Acad Sci USA 84:2545–2549

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Neitz J, Deegan JF II (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Deegan II JF (1994) Spectral sensitivity, photopigments and color vision of the guinea pig (Cavia porcellus). Behav Neurosci 108:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Jacobs GH, Neitz J, Krogh K (1996) Electroretinogram flicker photometry and its applications. J Opt Soc Am A 13:641–648

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Fenwick JC, Calderone JB, Deeb SS (1999) Human cone pigment expressed in transgenic mice yields altered vision. J Neurosci 19:3258–3265

    CAS  PubMed  Google Scholar 

  • Jacobs GH, Fenwick JA, Williams GA (2001) Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol 204:2439–2446

    CAS  PubMed  Google Scholar 

  • Jiao Y-Y, Lee TM, Rusak B (1999) Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus). Br Res 817:93–1013

    Article  CAS  Google Scholar 

  • Juliusson B, Bergstrom A, Rohlich P, Ehinger B, Veen T van , Szel A (1994) Complementary cone fields of the rabbit retina. Invest Ophthal Vis Sci 35:811–818

    CAS  PubMed  Google Scholar 

  • Kevan PG, Chittka L, Dyer AG (2001) Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. J Exp Biol 204:2571–2580

    CAS  PubMed  Google Scholar 

  • King JA (1956) Social relations of the guinea pig under semi-natural conditions. Ecology 37:221–228

    Google Scholar 

  • Kryger Z, Galli-Resta L, Jacobs GH, Reese BE (1998) The topography of rod and cone photoreceptors in the retina of the ground squirrel. Vis Neurosci 15:685–691

    Article  CAS  PubMed  Google Scholar 

  • LaVail MM (1976) Survival of some photoreceptors in albino rats following long-term exposure to continuous light. Invest Ophthal Vis Sci 15:64–70

    CAS  Google Scholar 

  • Lee TM, Labyak SE (1997) Free-running rhythms and light- and dark-pulse phase-response curves for diurnal Octodon degus. Am J Physiol 273:R278–R286

    CAS  PubMed  Google Scholar 

  • Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV- and midwave-sensitive cone-driven retinal responses of the mouse: a phenotype for coexpression of cone photopigments. J Neurosci 19:442–455

    CAS  PubMed  Google Scholar 

  • Macdonald D (ed) (2001) The new encyclopedia of mammals. Oxford University Press, Oxford

  • Muller B, Peichl L (1989) Topography of cones and rods in the tree shrew retina. J Comp Neurol 282:581–594

    CAS  PubMed  Google Scholar 

  • Parry JWL, Bowmaker JK (2002) Visual pigment coexpression in guinea pig cones: a microspectrophotometric study. Invest Ophthal Vis Sci 43:1662–1665

    PubMed  Google Scholar 

  • Paupoo AAV, Mahroo OAR, Friedburg C, Lamb TD (2000) Human cone photoreceptor responses measured by the electroretinogram a-wave during and after exposure to intense illumination. J Physiol (Lond) 529:469–482

    Google Scholar 

  • Peichl L, Gonzalez-Soriano J (1994) Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil and guinea pig. Vis Neurosci 11:501–517

    CAS  PubMed  Google Scholar 

  • Sun H, Macke JP, Nathans J (1997) Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci USA 94:8860–8865

    Article  CAS  PubMed  Google Scholar 

  • Szel A, Rohlich P (1992) Two cone types of rat retina detected by anti-visual pigment antibodies. Exp Eye Res 55:47–52

    CAS  PubMed  Google Scholar 

  • Szel A, Rohlich P, Caffe AR, Veen T van (1996) Distribution of cone photoreceptors in the mammalian retina. Microsc Res Tech 35:445–462

    Article  CAS  PubMed  Google Scholar 

  • Szel A, Lukats A, Fekete T, Szepessy Z, Rohlich P (2000) Photoreceptor distribution in the retinas of subprimate mammals. J Opt Soc Am A 17:568–579

    CAS  Google Scholar 

  • Weale RA (1988) Age and the transmittance of the human crystalline lens. J Physiol (Lond) 395:577–587

    Google Scholar 

  • Xu J, Pokorny J, Smith VC (1997) Optical density of the human lens. J Opt Soc Am A 14:953–960

    CAS  PubMed  Google Scholar 

  • Yokoyama S, Shi Y (2000) Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett 486:167–172

    CAS  PubMed  Google Scholar 

  • Yokoyama S, Radlwimmer FB, Kawamura S (1998) Regeneration of ultraviolet pigments of vertebrates. FEBS Lett 423:155–158

    CAS  PubMed  Google Scholar 

  • Yolton RL, Yolton DP, Renz J, Jacobs GH (1974) Preretinal absorbance in sciurid eyes. J Mammal 55:14–20

    CAS  PubMed  Google Scholar 

  • Zhang Y, Brainard GC, Zee Pc, Pinto LH, Takahashi JS, Turek FW (1998) Effects of aging on lens transmittance and retinal input to the suprachiasmatic nucleus in golden hamsters. Neurosci Lett 258:167–170

    Article  CAS  PubMed  Google Scholar 

  • Zigman S, Paxhia T, Waldron W (1985) Biochemical features of the grey squirrel lens. Invest Ophthal Vis Sci 26:1075–1082

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T.M. Lee and B.A. Tate for providing animals and J.A. Endler for loaning us equipment. This research was supported by a grant from the National Eye Institute (EY02052). All animal care and experimental procedures were in accordance with institutional animal care and use guidelines and with the Principles of animal care, publication No.86-23, revised 1985 of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, G.H., Calderone, J.B., Fenwick, J.A. et al. Visual adaptations in a diurnal rodent, Octodon degus . J Comp Physiol A 189, 347–361 (2003). https://doi.org/10.1007/s00359-003-0408-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-003-0408-0

Keywords

Navigation