Transcriptome of Moso Bamboo

  • Chapter
  • First Online:
The Moso Bamboo Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 247 Accesses

Abstract

With the development of biotechnology, transcriptome approach (RNA-Seq) has become an important means in identifying key genes. The next-generation sequencing technologies (NGS) feature unprecedented lower costs as well as greater depth. This chapter introduces the transcriptome information of bamboo shoot development, flower development, and seed germination by NGS. Transcriptome analysis is used to reveal the dynamic changes of development process and explore the regulatory mechanism of development, and to identify potential candidate genes for molecular breeding of moso bamboo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexandrov NN, Brover VV, Freidin S et al (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194

    Article  CAS  PubMed  Google Scholar 

  • Ap RT (1980) Assessment of the contribution of metabolic pathways to plant respiration. In: Davies DD (ed) The biochemistry of plants, vol 2. Academic Press, New Yourk, p 129

    Google Scholar 

  • Ap RT (1985) The organization of glycolysis and the oxidative pentose phosphate pathway. In: Douce R, Day DA (eds) Encyclopedia of plant physiology, vol 18. Springer, New York, pp 391–417

    Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995

    Article  CAS  PubMed  Google Scholar 

  • Ayako N, Kanako H, Hideki G et al (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  Google Scholar 

  • Bai QS, Hou D, Li L, et al (2016) Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in Moso bamboo (Phyllostachys edulis). Genome https://doi.org/10.1139/gen-2016-0097

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9(7):1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botha FC, O’Kennedy MM (1989) Characterization of the cytosolic aldolase from germinating Phaseolus vulgaris seeds. J Plant Physiol 135:433–438

    Article  CAS  Google Scholar 

  • Botha FC, Small JGC, Grobbelaar N (1983) The effect of water stress on the respiration and some aspects of respiratory metabolism of Citrullus Iantus seeds. S Afr J Bot 2(3):247

    Google Scholar 

  • Botha FC, Potgieter GP, Botha AM (1992) Respiratory metabolism and gene expression during seed germination. Plant Growth Regul 11:211–224

    Article  CAS  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D et al (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    Article  CAS  Google Scholar 

  • Cai CJ, Cao BH (2013) Physiological and biochemical changes of moso bamboo seed in artificial aging. Scientia Silvae Sinicae 49(8):29–34

    CAS  Google Scholar 

  • Cai CJ, Liu F, Peng ZH et al (2009) Effect of storage temperature and moisture content on seed vitality of moso bamboo (Phyllostachys edulis). J Anhui Agric Univ 36:607–611

    Google Scholar 

  • Cai CJ, Liu F, Guo QR et al (2010) A study on responses of moisture contents to seed germplasm preservation of moso baomboo (Phyllostachys edulis). Acta Agric Univ Jiangxiensis 32(2):0312–0317

    CAS  Google Scholar 

  • Campbell JJN (1985) Bamboo flowering patterns: a global view with special reference to East Asia. J Am Bamboo Soc 6:17–35

    Google Scholar 

  • Carrie C, Murcha MW, Giraud E et al (2013) How do plants make mitochondria? Planta 237(2):429–439

    Article  CAS  PubMed  Google Scholar 

  • Cheng ZJ, Wang L, Sun W et al (2013) Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by Auxin response factor 3. Plant Physiol 161:240–251

    Article  CAS  PubMed  Google Scholar 

  • Chia TYP, Pike MJ, Rawsthorne S (2005) Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot 56(415): 1285–1296

    Google Scholar 

  • Cui K, He CY, Zhang JG et al (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. J Proteome Res 11:2492–2507

    Article  CAS  PubMed  Google Scholar 

  • Dreni L, Pilatone A, Yun D et al (2011) Functional analysis of all AGAMOUS subfamily members in rice reveals their roles in reproductive organ identity determination and meristem determinacy. Plant Cell 23(8):2850–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L et al (2009) Candidate gene association map** of Arabidopsis flowering time. Genetics 183:325–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenshaft M, Brambl R (1990) Respiration and mitochondrial biogenesis in germinating embryos of maize. Plant Physiol 93:295–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elena P, Laura P, Sabrina S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66:1113–1121

    Article  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550, 550e1–550e2

    Google Scholar 

  • Gahan PB, Dawson AL, Black M et al (1986) Localization of glucose-6-phosphatedehydrogenase activity in seeds and its possible involvement in dormancy breakage. Ann Bot 57:791–799

    Article  CAS  Google Scholar 

  • Gao J, Ge W, Zhang Y et al (2015) Identification and characterization of microRNAs at different flowering developmental stages in Moso bamboo (Phyllostachys edulis) by high-throughput sequencing. Mol Genet Genomics 290:2335–2353

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez DO, Vodkin LO (2007) Specific elements of the glyoxylate pathway play a significant role in the functional transition of the soybean cotyledon during seedling development. BMC Genomics 9(18):468

    Article  Google Scholar 

  • Gosling PC, Ross JD (1979) Characterization of glucose-6-phosphate dehydrogenase and 6-phosphogluconic dehydrogenase from hazel cotyledons. Phytochemistry 8:1441–1445

    Article  Google Scholar 

  • He CY, Cui K, Zhang JG et al (2013) Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of develo** culms in Moso bamboo. BMC Plant Biol 13:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirokawa N, Noda Y, Tanaka Y et al (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Ding L, Hao Y (2013) Crosstalk between GA and JA signaling mediates plant growth and defense. Plant Cell Rep 32:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Howell KA, Millar AH, Whelan J (2006) Ordered assembly of mitochondria during rice germination begins with promitochondrial structures rich in components of the protein import apparatus. Plant Mol Biol 60:201–223

    Article  CAS  PubMed  Google Scholar 

  • Hu HN, Gary AC (1990) Activities of catalase and pathway dehydrogenases release in Nectarine seed pentose phosphate during dormancy. J Am Soc Hortic Sci 115(6):987–990

    Article  CAS  Google Scholar 

  • Janzen DH (1976) Why bamboos wait so long to flower. Ann Rev Ecol Syst 7:347–391

    Article  Google Scholar 

  • Jeon JS, Jang S, Lee S et al (2000) Leafy hull sterilel is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12(6):871–884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jessica ASB, João HFC, David BM et al (2017) Autophagy deficiency compromises alternative pathways of respiration following energy deprivation in Arabidopsis thaliana. Plant Physiol 175:62–76

    Article  Google Scholar 

  • Jiang ZH (2002) The flowering and fruiting of bamboo and bamboo seedling breeding. In: Liu H, Luan SL, eds, Bamboo and rattan in the world, vol 17, 1st edn. Liaoning Science and Technology publishing house, Shenyang, pp 124–125

    Google Scholar 

  • Jiang FL, Bo LP, Xu JJ et al (2018) Changes in respiration and structure of non-heading Chinese cabbage seeds during gradual artificial aging. Sci Hortic 238:14–22

    Article  CAS  Google Scholar 

  • Kazan K, John M (2013) MYC2: the master in action. Mol Plant 6:686–703

    Article  CAS  PubMed  Google Scholar 

  • Khan AA (1971) Cytokinins: permissive role in seed germination. Science 171:353–359

    Article  Google Scholar 

  • Kobayashi K, Baba S, Obayashi T et al (2012) Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 24:1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XW (2013) The law of material and energy metabolism regulated by the key enzyme of respiration in the process of seed germination. MA. Thesis. Lanzhou university, Lanzhou

    Google Scholar 

  • Li DJ, Yang CH, Li XB et al (2009) Functional characterization of rice OsDof12. Planta 229:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Chen HW, Li QT (2015) Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci Rep 5:12477

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Hu T, Li XP et al (2016) Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo. Mol Genet Genomics 291:1–20

    Article  Google Scholar 

  • Li XY, **e LH, Zheng HF et al (2019a) Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. Tree Physiol 39:2027–2044

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhang BS, Gao HY et al (2019b) Anatomical structural changes and correlation between water content and germination characteristics during seed germination of Phyllostachy edulis (CARRIÈRE) J.HOUZ. Propag Ornamental Plants 5:3–8

    CAS  Google Scholar 

  • Lin XC, Chow TY, Chen HH et al (2010) Understanding bamboo flowering based on large-scale analysis of expressed sequence tags. Genet Mol Res 9:1085–1093

    Article  CAS  PubMed  Google Scholar 

  • Liu M (2014) Changes of enzyme activity and gene expression related to respiratory metabolism during Shannon17 wheat seed germination. MA. Thesis. Shandong agriculture university, Taian

    Google Scholar 

  • Liu F, Cao BH, Cai CJ et al (2009) Study on the change of physiology and biochemistry of Phyllostachys edulis seed during germination. Seed 28(2):12–14

    Google Scholar 

  • Logan DC, Leaver CJ (2000) Mitochondria-targeted GFP high lights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J Exp Bot 51:865–871

    Article  CAS  PubMed  Google Scholar 

  • Maaike DJ, Mieke WA, Jose LG-M et al (2011) The Solanum lycopersicum AUXIN response factor 7 (SlARF7) mediates cross-talk between auxin and gibberellin signaling during tomato fruit set and development. J Exp Bot 62:617–626

    Article  Google Scholar 

  • Makita A (1998) The significance of the mode of clonal growth in the life history of bamboos. Plant Spec Biol 13:85–92

    Article  Google Scholar 

  • Mendes CR, Moraes DMD, Lima MDGDS et al (2009) Respiratory activity for the differentiation of vigor on soybean seeds lots. Revista Brasileira Sem 31(2):171–176

    Article  Google Scholar 

  • Michiko S, Nanako I, Tsuyoshi H et al (2015) The carboxyl-terminal tail of the stalk of Arabidopsis NACK1/HINKEL kinesin is required for its localization to the cell plate formation site. Plant Res 128:327–336

    Article  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Morohashi Y (1980) Development of mitochondrial activity in pea cotyledons following imbibition; influence of the embryonic axis. J Exp Bot 31(3):805–812

    Article  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadgauda RS, Parasharami VA, Mascarenhas AF (1990) Precocious flowering and seeding behaviour in tissue-cultured bamboos. Nature 344:335–336

    Article  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E et al (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Nawa Y, Asahi T (1971) Rapid development of mitochondria in pea cotyledons during the early stage of germination. Plant Physiol 48(6):671–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemhauser JL, Hong FX, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlap** transcriptional responses. Cell 126:467–475

    Article  CAS  PubMed  Google Scholar 

  • Pan RZ (2008) Respiratory metabolic pathways in plants. In: Li GY, Meng L, eds, Plant physiology, 6th edn. Higher education press, Bei**g, pp 106–123

    Google Scholar 

  • Paque S, Mouille G, Grandont L (2014) AUXIN binding protein1 links cell wall remodeling, auxin signaling, and cell expansion in Arabidopsis. Plant Cell 26:280–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul KB, Ruth MB, Joshua SM et al (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18–S31

    Article  Google Scholar 

  • Peng J (2009) Gibberellin and jasmonate crosstalk during stamen development. J Integr Plant Biol 51:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Peng ZH, Zhang CL, Zhang Y, et al (2013) Transcriptome sequencing and analysis of the fast-growing shoots of Moso bamboo (Phyllostachys edulis). PLoS ONE 8:e78944

    Google Scholar 

  • Ren SJ (2010) Study on the cell cycle and physiological characteristics of pinus massoniana seed germination. MA. Thesis. Nan**g forestry university, Nan**g

    Google Scholar 

  • Richards DE, King KE, Ait-ali T et al (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annu Rev Plant Physiol Plant Mol Biol 52:67–88

    Article  CAS  PubMed  Google Scholar 

  • Robson F, Costa MMR, Hepworth SR et al (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28(6):619–631

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JL, De Diego JG, Rodríguez FD et al (2015) Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana. Biologia 70(8):1019–1025

    Article  Google Scholar 

  • Salon C, Raymond P, Pradet A (1988) Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos. J Biol Chem 263:12278–12287

    Article  CAS  PubMed  Google Scholar 

  • Samach A, Onouchi H, Gold SE et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Sarkar PK, Kumar PR, Singh AK, et al (2019) Effect of priming treatments on seed germination and seedling growth in bamboo [Dendrocalamus strictus (Roxb.) Nees]. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2018.11.004

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Smiri M, Chaoui A, Ferjani EE (2009) Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium. J Plant Physiol 166(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Staehelin LA, Newcomb EH (2000) Membrane structure and membranous organelles. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1–50

    Google Scholar 

  • Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Tan XF, Luo M et al (2014) The sequencing analysis of transcriptome of Vernicia fordii flower buds at two development stages. Scientia Silvae Sinicae 50:70–74

    CAS  Google Scholar 

  • Swamy PM, Sandhyarani CK (1986) Contribution of the pentose phosphate pathway and glycolytic pathway to dormancy breakage and germination of peanut Arachishypogaea seeds. I Exp Bot 37:80–88

    Article  CAS  Google Scholar 

  • Tanaka H, Ishikawa M, Kitamura S et al (2004) The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 9:1199–1211

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Ma XJ, Mo CM et al (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNAseq and digital gene expression analysis. BMC Genomics 12:343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signaling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  CAS  PubMed  Google Scholar 

  • Tian Q, Reed J (1999) Control of auxin-regulated root development by the Arabidopsis thaliana SHY2/IAA3 gene. Development 126:711–721

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M et al (2006) MGAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47(3):427–444

    Article  CAS  PubMed  Google Scholar 

  • Wang JY (2002) Glycolysis. In: Biochemistry, 3rd edn. Higher education press, Bei**g, pp 63–90

    Google Scholar 

  • Wang XY, Fang SZ (2007) Storage substance content and corresponding enzyme activity during the stratification of Cyclocarya paliurus seeds. J Nan**g for Univ (nat Sci) 31(1):111–113

    Google Scholar 

  • Wang XX, Gao J, Zhou LR (2010) Research of POD isoenzyme and PAPD molecular detection on moso bamboo 60Co-γirradiation. Acta Laser Biology Sinica 19(6):758–763

    CAS  Google Scholar 

  • Wang Y, Li Y, Xue H, et al (2015) Reactive oxygen species-provoked mitochondria-dependent cell death during ageing of elm (Ulmus pumila L.) seeds. Plant J 81(3):438–452

    Google Scholar 

  • Wang YJ, Sun XP, Ding YL et al (2019) Cellular and molecular characterization of a thick-walled variant reveal a pivotal role of shoot apical meristem in transverse development of bamboo culm. J Exp Bot 70:3911–3926

    Article  CAS  PubMed  Google Scholar 

  • Wei Q, Jiao C, Ding YL et al. Cellular and molecular characterizations of a slow-growth variant provide insights into the fast growth of bamboo. Tree Physiol 4:1–14

    Google Scholar 

  • Wei Q, Jiao C, Guo L et al (2016) Exploring key cellular processes and candidate genes regulating the primary thickening growth of moso underground shoots. New Phytol 214:81–96

    Article  PubMed  Google Scholar 

  • Wei Q, Guo L, Jiao C et al (2019) Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage. Tree Physiol 39:1201–1214

    Article  CAS  PubMed  Google Scholar 

  • Weitbrecht K, Müller K, Leubner-Metzger G (2011) First off the mark: early seed germination. J Exp Bot 62:3289–3309

    Article  CAS  PubMed  Google Scholar 

  • Xu YM, Hao PY, Fei BH (2008) Dynamic change of anatomical structure and chemical constitute of bamboo shoot for Phyuostachys pubescence at development stage. J Northeast for Univ 36:8–16

    Google Scholar 

  • Xu QT, Yang L, Zhou ZQ et al (2013) Process of aerenchyma formation and reactive oxygen species induced by water logging in wheat seminal roots. Planta 238:969–982

    Article  CAS  PubMed  Google Scholar 

  • Yan Q (2001) Theory and determination of seed viability. In: Seed, vol 6. China agricultural press, Bei**g, pp 103–106, 304

    Google Scholar 

  • Yang WF, Zhang JL, Lü WZ et al (2014) Study on the differential genes expression in maize embryo treated by a controlled deterioration treatment. Sci Agric Sin 47(10):1878–1893

    CAS  Google Scholar 

  • Yao Z, Tian F, Cao X, et al. (2016) Global transcriptomic analysis reveals the mechanism of Phelipanche aegyptiaca seed germination. Int J Mol Sci 17(7):1139

    Google Scholar 

  • Yin XJ, He DL, Gupta R et al (2015) Physiological and proteomic analyses on artificially aged Brassica napus seed. Front Plant Sci 6:112

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu YL, Guo GF, Lv DW et al (2014) Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20. BMC Plant Biol 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaynab M, Pan D, Fatima M et al (2018) Transcriptomic approach to address low germination rate in Cyclobalnopsis gilva seeds. S Afr J Bot 119:286–294

    Article  CAS  Google Scholar 

  • Zhang DF, Li B, Jia GQ, et al. (2008) Isolation and characterization of genes encoding GRF transcription factors and GIF transcriptional coactivators in Maize (Zea mays L.). Plant Sci 175(6):809–817

    Google Scholar 

  • Zhang XM, Zhao L, Larson-Rabin Z, et al. (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7(8):e42082

    Google Scholar 

  • Zhang YX, Anja P, Caroline M et al (2014) The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. J Exp Bot 65:4919–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YH, Yang SL, Liu HQ et al (2001) Relationship between phosphopentose pathway and seed dormancy releasing of Panax quinque folius. Chin Tradit Herbal Drugs 32(3):259–261

    Google Scholar 

  • Zhou FC (1998) The flowering and fruiting of bamboo. In: Editor Board of Bamboo research (eds) Bamboo cultivation. Nan**g Forestry University Printing Company, Nan**g, pp 93–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, J., Cheng, Z., Li, L., Zhang, Y., Li, J. (2021). Transcriptome of Moso Bamboo. In: Gao, J. (eds) The Moso Bamboo Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-80836-5_6

Download citation

Publish with us

Policies and ethics

Navigation