Advances in Artificial Intelligence for the Identification of Epileptiform Discharges

  • Chapter
  • First Online:
Handbook of Artificial Intelligence in Healthcare

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 211))

  • 1062 Accesses

Abstract

Epilepsy is one of the most common neurological disorders, with millions affected worldwide, disturbing the normal brain activity and causing abnormal dynamics to be initiated in various regions of the brain. In order, to define the different ictal states and thus to evaluate the overall course of the patient, expert clinicians rely on Electroencephalography (EEG) denoting the differentiated events based on their experience and perception. As such, the implementation of cutting-edge Artificial Intelligence (AI) tools can not only alleviate misdetection but also provide a support bases in order to extract additional information regarding epileptic characteristics. In this chapter, AI tools and techniques that comprise distinct frameworks of epilepsy evaluation over the last decade are described while noting the performance, the methodological aspects and challenges. The related AI applications are further reviewed concerning the principles, parameters, complexity, feature selection and classification approaches and their implications in automated system integration and epileptic attributes identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 189.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 189.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADHD:

Attention Deficit Hyperactivity Disorder

ANOVA:

Analysis Of Variance

AI:

Artificial Intelligence

ANN:

Artificial Neural Networks

CT:

Clustering Technique

CNN:

Convolutional NN

DSS:

Decision Support System

DT:

Decision Trees

DTI:

Diffusion Tensor Imaging

DTF:

Directed Transfer Function

DWT:

Discrete Wavelet Transformation

EMD:

Empirical Mode Decomposition

EEG:

Electroencephalogram

ED:

Epileptiform Discharges

EZ:

Epileptogenic Zone

FS:

Feature Selection

FDA:

Fisher Discriminant Analysis

FLP:

Fractional Linear Prediction

FC:

Functional Connectivity

fMRI:

Functional Magnetic Resonance Imaging

FIS:

Fuzzy Inference System

GFD:

Generalized Fractal Dimensions

GP:

Genetic Programming

GE:

Grammatical Evolution

HFO:

High Frequency Oscillations

HOS:

Higher Order Spectra

IED:

Inter-ictal Epileptiform Discharges

ILAE:

International League Against Epilepsy

iEEG:

Intracranial EEG

IMF:

Intrinsic Mode Functions

kNN:

K-Nearest-Neighbor

LS-SVM:

Least Square SVM

LDA:

Linear Discriminant Analysis

LPF:

Linear Prediction Filter

LBP:

Local Binary Patterns

MI:

Mutual Information

NBC:

Naïve Bayes Classifier

NN:

Neural Network

PE:

Permutation Entropy

PSR:

Phase Space Representation

PCA:

Principal Components Analysis

PNN:

Probabilistic NN

RBF:

Radial Basis Function

RF:

Random Forests

RQA:

Recurrence Quantification Analysis

SODP:

Second Order Difference Plots

SOZ:

Seizure Onset Zones

sEEG:

Stereo EEG

SUDEP:

Sudden Unexpected Death in Epilepsy

SVM:

Support Vector Machines

WPT:

Wavelet Packet Transform

WHO:

World Health Organization

References

  1. Epilepsy. https://www.who.int/news-room/fact-sheets/detail/epilepsy

  2. Zhang, G., et al.: MNL-network: a multi-scale non-local network for epilepsy detection from EEG signals. Front. Neurosci. 14, (2020). https://doi.org/10.3389/fnins.2020.00870

  3. Liang, W., Pei, H., Cai, Q., Wang, Y.: Scalp EEG epileptogenic zone recognition and localization based on long-term recurrent convolutional network. Neurocomputing 396, 569–576 (2020). https://doi.org/10.1016/j.neucom.2018.10.108

    Article  Google Scholar 

  4. Parvizi, J., Kastner, S.: Human intracranial EEG: promises and limitations. Nat. Neurosci. 21(4), 474–483 (2018). https://doi.org/10.1038/s41593-018-0108-2

    Article  Google Scholar 

  5. Frusque, G., Borgnat, P., Gonçalves, P., Jung, J.: Semi-automatic extraction of functional dynamic networks describing patient’s epileptic seizures. Front. Neurol. 11, (2020). https://doi.org/10.3389/fneur.2020.579725

  6. Gnatkovsky, V., et al.: Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals. Epilepsia 52(3), 477–488 (2011). https://doi.org/10.1111/j.1528-1167.2010.02931.x

    Article  Google Scholar 

  7. Garcés Correa, A., Orosco, L., Diez, P., Laciar, E.: Automatic detection of epileptic seizures in long-term EEG records. Comput. Biol. Med. 57, 66–73 (2015). https://doi.org/10.1016/j.compbiomed.2014.11.013

  8. Geertsema, E.E., Visser, G.H., Velis, D.N., Claus, S.P., Zijlmans, M., Kalitzin, S.N.: Automated seizure onset zone approximation based on nonharmonic high-frequency oscillations in human interictal intracranial EEGs. Int. J. Neural Syst. (2015). https://doi.org/10.1142/S012906571550015X

    Article  Google Scholar 

  9. Rasekhi, J., Mollaei, M.R.K., Bandarabadi, M., Teixeira, C.A., Dourado, A.: Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods. J. Neurosci. Methods 217(1–2), 9–16 (2013). https://doi.org/10.1016/j.jneumeth.2013.03.019

    Article  Google Scholar 

  10. Akter, M.S., et al.: Statistical features in high-frequency bands of interictal iEEG work efficiently in identifying the seizure onset zone in patients with focal epilepsy. Entropy 22(12), (2020). Article No.: 12. https://doi.org/10.3390/e22121415

  11. Parvez, M.Z., Paul, M., Antolovich, M.: Detection of pre-stage of epileptic seizure by exploiting temporal correlation of EMD decomposed EEG signals. JOMB 4(2), 110–116 (2015). https://doi.org/10.12720/jomb.4.2.110-116

    Article  Google Scholar 

  12. Bagheri, E., **, J., Dauwels, J., Cash, S., Westover, M.B.: A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram. J. Neurosci. Methods 326, 108362 (2019). https://doi.org/10.1016/j.jneumeth.2019.108362

    Article  Google Scholar 

  13. Fisher, R.S., Scharfman, H.E., de Curtis, M.: How can we identify ictal and interictal abnormal activity? Adv. Exp. Med. Biol. 813, 3–23 (2014). https://doi.org/10.1007/978-94-017-8914-1_1

    Article  Google Scholar 

  14. Fisher, R.S., Engel, J.J.: Definition of the postictal state: when does it start and end? Epilepsy Behav. 19(2), 100–104 (2010). https://doi.org/10.1016/j.yebeh.2010.06.038

    Article  Google Scholar 

  15. Karoly, P.J., et al.: Interictal spikes and epileptic seizures: their relationship and underlying rhythmicity. Brain 139(4), 1066–1078 (2016). https://doi.org/10.1093/brain/aww019

    Article  Google Scholar 

  16. Goldstein, L., Margiotta, M., Guina, M.L., Sperling, M.R., Nei, M.: Long-term video-EEG monitoring and interictal epileptiform abnormalities. Epilepsy Behav. 113, 107523 (2020). https://doi.org/10.1016/j.yebeh.2020.107523

    Article  Google Scholar 

  17. Madan, S., Srivastava, K., Sharmila, A., Mahalakshmi, P.: A case study on discrete wavelet transform based hurst exponent for epilepsy detection. J. Med. Eng. Technol. 42(1), 9–17 (2018). https://doi.org/10.1080/03091902.2017.1394390

    Article  Google Scholar 

  18. Pachori, R.B., Bajaj, V.: Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput. Methods Prog. Biomed. 104(3), 373–381 (2011). https://doi.org/10.1016/j.cmpb.2011.03.009

    Article  Google Scholar 

  19. Alickovic, E., Kevric, J., Subasi, A.: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control 39, 94–102 (2018). https://doi.org/10.1016/j.bspc.2017.07.022

    Article  Google Scholar 

  20. Bajaj, V., Pachori, R.B.: Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals. Biomed. Eng. Lett. 3(1), 17–21 (2013). https://doi.org/10.1007/s13534-013-0084-0

    Article  Google Scholar 

  21. Oweis, R.J., Abdulhay, E.W.: Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10(1), 38 (2011). https://doi.org/10.1186/1475-925X-10-38

    Article  Google Scholar 

  22. Pachori, R.B., Patidar, S.: Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput. Methods Prog. Biomed. 113(2), 494–502 (2014). https://doi.org/10.1016/j.cmpb.2013.11.014

    Article  Google Scholar 

  23. Acharya, U.R., et al.: Automated diagnosis of epilepsy using CWT, HOS and texture parameters. Int. J. Neural Syst. 23(3), 1350009 (2013). https://doi.org/10.1142/S0129065713500093

    Article  Google Scholar 

  24. Kumar, Y., Dewal, M.L., Anand, R.S.: Relative wavelet energy and wavelet entropy based epileptic brain signals classification. Biomed. Eng. Lett. 2(3), 147–157 (2012). https://doi.org/10.1007/s13534-012-0066-7

    Article  Google Scholar 

  25. Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012). https://doi.org/10.1016/j.eswa.2011.07.008

    Article  Google Scholar 

  26. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133, 271–279 (2014). https://doi.org/10.1016/j.neucom.2013.11.009

    Article  Google Scholar 

  27. Siuly, Li, Y., (Paul) Wen, P.: Clustering technique-based least square support vector machine for EEG signal classification. Comput. Methods Prog. Biomed. 104(3), 358–372 (2011). https://doi.org/10.1016/j.cmpb.2010.11.014

  28. Mera-Gaona, M., López, D.M., Vargas-Canas, R., Miño, M.: Epileptic spikes detector in pediatric EEG based on matched filters and neural networks. Brain Inf. 7(1), (2020). https://doi.org/10.1186/s40708-020-00106-0

  29. Zandi, A.S., Tafreshi, R., Javidan, M., Dumont, G.A.: Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals. IEEE Trans. Biomed. Eng. 60(5), 1401–1413 (2013). https://doi.org/10.1109/TBME.2012.2237399

    Article  Google Scholar 

  30. Uthayakumar, R., Easwaramoorthy, D.: Epileptic seizure detection in EEG signals using multifractal analysis and wavelet transform. Fractals 21(02), 1350011 (2013). https://doi.org/10.1142/S0218348X13500114

    Article  MathSciNet  Google Scholar 

  31. Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S.: 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl. Math. Comput. 243, 209–219 (2014). https://doi.org/10.1016/j.amc.2014.05.128

    Article  MathSciNet  MATH  Google Scholar 

  32. Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., Ang, P.C.A.: Application of recurrence quantification analysis for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 21(3), 199–211 (2011). https://doi.org/10.1142/S0129065711002808

    Article  Google Scholar 

  33. Sharma, R., Pachori, R.B.: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42(3), 1106–1117 (2015). https://doi.org/10.1016/j.eswa.2014.08.030

    Article  Google Scholar 

  34. Übeyli, E.D.: Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst. Appl. 37(2), 985–992 (2010). https://doi.org/10.1016/j.eswa.2009.05.078

    Article  Google Scholar 

  35. Friston, K.J.: Functional and effective connectivity: a review. Brain Connectivity 1(1), 13–36 (2011). https://doi.org/10.1089/brain.2011.0008

    Article  MathSciNet  Google Scholar 

  36. Ambroise, C., McLachlan, G.J.: Selection bias in gene extraction on the basis of microarray gene-expression data. PNAS 99(10), 6562–6566 (2002). https://doi.org/10.1073/pnas.102102699

    Article  MATH  Google Scholar 

  37. Foley, D.: Considerations of sample and feature size. IEEE Trans. Inf. Theory 18(5), 618–626 (1972). https://doi.org/10.1109/TIT.1972.1054863

    Article  MATH  Google Scholar 

  38. Muñoz, M.A., Villanova, L., Baatar, D., Smith-Miles, K.: Instance spaces for machine learning classification. Mach. Learn. 107(1), 109–147 (2018). https://doi.org/10.1007/s10994-017-5629-5

    Article  MathSciNet  MATH  Google Scholar 

  39. Hsu, K.-C., Yu, S.-N.: Detection of seizures in EEG using subband nonlinear parameters and genetic algorithm. Comput. Biol. Med. 40(10), 823–830 (2010). https://doi.org/10.1016/j.compbiomed.2010.08.005

    Article  Google Scholar 

  40. Nishad, A., Pachori, R.B.: Classification of epileptic electroencephalogram signals using tunable-Q wavelet transform based filter-bank. J. Ambient Intell. Human Comput. (2020). https://doi.org/10.1007/s12652-020-01722-8

    Article  Google Scholar 

  41. Wang, D., Miao, D., **e, C.: Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Syst. Appl. 38(11), 14314–14320 (2011). https://doi.org/10.1016/j.eswa.2011.05.096

    Article  Google Scholar 

  42. Selvakumari, R.S., Mahalakshmi, M., Prashalee, P.: Patient-specific seizure detection method using hybrid classifier with optimized electrodes. J. Med. Syst. 43(5), 121 (2019). https://doi.org/10.1007/s10916-019-1234-4

    Article  Google Scholar 

  43. Guo, L., Rivero, D., Dorado, J., Rabuñal, J.R., Pazos, A.: Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J. Neurosci. Methods 191(1), 101–109 (2010). https://doi.org/10.1016/j.jneumeth.2010.05.020

    Article  Google Scholar 

  44. Smart, O., Tsoulos, I.G., Gavrilis, D., Georgoulas, G.: Grammatical evolution for features of epileptic oscillations in clinical intracranial electroencephalograms. Expert Syst Appl 38(8), 9991–9999 (2011). https://doi.org/10.1016/j.eswa.2011.02.009

    Article  Google Scholar 

  45. Kumar, T.S., Kanhangad, V., Pachori, R.B.: Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed. Signal Process. Control 15, 33–40 (2015). https://doi.org/10.1016/j.bspc.2014.08.014

    Article  Google Scholar 

  46. Sharmila, A., Geethanjali, P.: DWT based detection of epileptic seizure from EEG signals using Naive Bayes and k-NN classifiers. IEEE Access 4, 7716–7727 (2016). https://doi.org/10.1109/ACCESS.2016.2585661

    Article  Google Scholar 

  47. Orhan, U., Hekim, M., Ozer, M.: EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst. Appl. 38(10), 13475–13481 (2011). https://doi.org/10.1016/j.eswa.2011.04.149

    Article  Google Scholar 

  48. Acharya, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.-H., Suri, J.S.: Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012). https://doi.org/10.1016/j.bspc.2011.07.007

    Article  Google Scholar 

  49. Fu, K., Qu, J., Chai, Y., Dong, Y.: Classification of seizure based on the time-frequency image of EEG signals using HHT and SVM. Biomed. Signal Process. Control 13, 15–22 (2014). https://doi.org/10.1016/j.bspc.2014.03.007

    Article  Google Scholar 

  50. Li, S., Zhou, W., Yuan, Q., Geng, S., Cai, D.: Feature extraction and recognition of ictal EEG using EMD and SVM. Comput. Biol. Med. 43(7), 807–816 (2013). https://doi.org/10.1016/j.compbiomed.2013.04.002

    Article  Google Scholar 

  51. Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K.: Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE J. Biomed. Health Inf. 21(4), 888–896 (2017). https://doi.org/10.1109/JBHI.2016.2589971

    Article  Google Scholar 

  52. Altunay, S., Telatar, Z., Erogul, O.: Epileptic EEG detection using the linear prediction error energy. Expert Syst. Appl. 37(8), 5661–5665 (2010). https://doi.org/10.1016/j.eswa.2010.02.045

    Article  Google Scholar 

  53. Teixeira, C.A., et al.: EPILAB: A software package for studies on the prediction of epileptic seizures. J. Neurosci. Methods 200(2), 257–271 (2011). https://doi.org/10.1016/j.jneumeth.2011.07.002

    Article  Google Scholar 

  54. Gong, C., Zhang, X., Niu, Y.: Identification of epilepsy from intracranial EEG signals by using different neural network models. Comput. Biol. Chem. 87, 107310 (2020). https://doi.org/10.1016/j.compbiolchem.2020.107310

    Article  Google Scholar 

  55. Xu, G., Ren, T., Chen, Y., Che, W., A one-dimensional CNN-LSTM model for epileptic seizure recognition using EEG signal analysis. Front. Neurosci. 14, (2020). https://doi.org/10.3389/fnins.2020.578126

  56. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 64(6 Pt 1), 061907 (2001). https://doi.org/10.1103/PhysRevE.64.061907

    Article  Google Scholar 

  57. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. SIViP 8(7), 1323–1334 (2014). https://doi.org/10.1007/s11760-012-0362-9

    Article  Google Scholar 

  58. Lee, S.-H., Lim, J.S., Kim, J.-K., Yang, J., Lee, Y.: Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput. Methods Prog. Biomed. 116(1), 10–25 (2014). https://doi.org/10.1016/j.cmpb.2014.04.012

    Article  Google Scholar 

  59. EEG Database—Seizure Prediction Project Freiburg. http://epilepsy.uni-freiburg.de/freiburg-seizure-prediction-project/eeg-database

  60. Raghu, S., Sriraam, N.: Optimal configuration of multilayer perceptron neural network classifier for recognition of intracranial epileptic seizures. Expert Syst. Appl. 89, 205–221 (2017). https://doi.org/10.1016/j.eswa.2017.07.029

    Article  Google Scholar 

  61. Raghu, S., Sriraam, N., Kumar, G.P.: Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier. Cogn. Neurodyn. 11(1), 51–66 (2017). https://doi.org/10.1007/s11571-016-9408-y

    Article  Google Scholar 

  62. Guo, L., Rivero, D., Dorado, J., Munteanu, C.R., Pazos, A.: Automatic feature extraction using genetic programming: an application to epileptic EEG classification. Expert Syst. Appl. 38(8), 10425–10436 (2011). https://doi.org/10.1016/j.eswa.2011.02.118

    Article  Google Scholar 

  63. Goldberger, A.L., et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), E215–E220 (2000). https://doi.org/10.1161/01.cir.101.23.e215

    Article  Google Scholar 

  64. Chung, Y.G., et al.: Deep convolutional neural network based interictal-preictal electroencephalography prediction: application to focal cortical dysplasia type-II. Front. Neurol. 11, (2020). https://doi.org/10.3389/fneur.2020.594679

  65. Li, Q., Gao, J., Huang, Q., Wu, Y., Xu, B.: Distinguishing epileptiform discharges from normal electroencephalograms using scale-dependent Lyapunov exponent. Front. Bioeng. Biotechnol. 8, (2020). https://doi.org/10.3389/fbioe.2020.01006

  66. Khosropanah, P., Ramli, A.R., Abbasi, M.R., Marhaban, M.H., Ahmedov, A.: A hybrid unsupervised approach toward EEG epileptic spikes detection. Neural Comput. Appl. 32(7), 2521–2532 (2020). https://doi.org/10.1007/s00521-018-3797-2

    Article  Google Scholar 

  67. Jiang, Y., Chen, W., Zhang, T., Li, M., You, Y., Zheng, X.: Develo** multi-component dictionary-based sparse representation for automatic detection of epileptic EEG spikes. Biomed. Signal Process. Control 60, 101966 (2020). https://doi.org/10.1016/j.bspc.2020.101966

    Article  Google Scholar 

  68. Theeranaew, W., et al.: Automated detection of postictal generalized EEG suppression. IEEE Trans. Biomed. Eng. 65(2), 371–377 (2018). https://doi.org/10.1109/TBME.2017.2771468

    Article  Google Scholar 

  69. Amin, H.U., Yusoff, M.Z., Ahmad, R.F.: A novel approach based on wavelet analysis and arithmetic coding for automated detection and diagnosis of epileptic seizure in EEG signals using machine learning techniques. Biomed. Signal Process. Control 56, 101707 (2020). https://doi.org/10.1016/j.bspc.2019.101707

    Article  Google Scholar 

  70. Chen, D., Wan, S., **ang, J., Bao, F.S.: A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG. PLoS ONE 12(3), (2017). https://doi.org/10.1371/journal.pone.0173138

  71. Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf. Technol. Biomed. 16(6), 1135–1142 (2012). https://doi.org/10.1109/TITB.2011.2181403

    Article  Google Scholar 

  72. Übeyli, E.D.: Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals. Expert Syst. Appl. 37(1), 233–239 (2010). https://doi.org/10.1016/j.eswa.2009.05.012

    Article  Google Scholar 

  73. Gandhi, T., Panigrahi, B.K., Anand, S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17), 3051–3057 (2011). https://doi.org/10.1016/j.neucom.2011.04.029

    Article  Google Scholar 

  74. Aung, S.T., Wongsawat, Y.: Modified-distribution entropy as the features for the detection of epileptic seizures. Front. Physiol. 11, (2020). https://doi.org/10.3389/fphys.2020.00607

  75. Mahjoub, C., Jeannès, R.L.B., Lajnef, T., Kachouri, A.: Epileptic seizure detection on EEG signals using machine learning techniques and advanced preprocessing methods. Biomed. Eng. (Biomedizinische Technik) 65(1), 33–50 (2020). https://doi.org/10.1515/bmt-2019-0001

    Article  Google Scholar 

  76. Sharma, A., Rai, J.K., Tewari, R.P.: Scalp electroencephalography (sEEG) based advanced prediction of epileptic seizure time and identification of epileptogenic region. Biomed. Eng. (Biomedizinische Technik) 65(6), 705–720 (2020). https://doi.org/10.1515/bmt-2020-0044

    Article  Google Scholar 

  77. Iscan, Z., Dokur, Z., Demiralp, T.: Classification of electroencephalogram signals with combined time and frequency features. Expert Syst. Appl. 38(8), 10499–10505 (2011). https://doi.org/10.1016/j.eswa.2011.02.110

    Article  Google Scholar 

  78. Wang, G., Ren, D., Li, K., Wang, D., Wang, M., Yan, X.: EEG-based detection of epileptic seizures through the use of a directed transfer function method. IEEE Access 6, 47189–47198 (2018). https://doi.org/10.1109/ACCESS.2018.2867008

    Article  Google Scholar 

  79. Feldwisch-Drentrup, H., Schelter, B., Jachan, M., Nawrath, J., Timmer, J., Schulze-Bonhage, A.: Joining the benefits: combining epileptic seizure prediction methods. Epilepsia 51(8), 1598–1606 (2010). https://doi.org/10.1111/j.1528-1167.2009.02497.x

    Article  Google Scholar 

  80. Mardini, W., Yassein, M.M.B., Al-Rawashdeh, R., Aljawarneh, S., Khamayseh, Y., Meqdadi, O.: Enhanced detection of epileptic seizure using EEG signals in combination with machine learning classifiers. IEEE Access 8, 24046–24055 (2020). https://doi.org/10.1109/ACCESS.2020.2970012

    Article  Google Scholar 

  81. Lahmiri, S., Shmuel, A.: Accurate classification of seizure and seizure-free intervals of intracranial EEG signals from epileptic patients. IEEE Trans. Instrum. Meas. 68(3), 791–796 (2019). https://doi.org/10.1109/TIM.2018.2855518

    Article  Google Scholar 

  82. Joshi, V., Pachori, R.B., Vijesh, A.: Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed. Signal Process. Control 9, 1–5 (2014). https://doi.org/10.1016/j.bspc.2013.08.006

    Article  Google Scholar 

  83. Acharya, U.R., Sree, S.V., Suri, J.S.: Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 21(05), 403–414 (2011). https://doi.org/10.1142/S0129065711002912

    Article  Google Scholar 

  84. Ramanna, S., Tirunagari, S., Windridge, D.: Epileptic seizure detection using constrained singular spectrum analysis and 1D-local binary patterns. Health Technol. 10(3), 699–709 (2020). https://doi.org/10.1007/s12553-019-00395-4

    Article  Google Scholar 

  85. Siddiqui, M.K., Morales-Menendez, R., Huang, X., Hussain, A.: A review of epileptic seizure detection using machine learning classifiers. Brain Inf. 7(1), (2020). https://doi.org/10.1186/s40708-020-00105-1

  86. Gadhoumi, K., Lina, J.-M., Gotman, J.: Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG. Clin Neurophysiol 123(10), 1906–1916 (2012). https://doi.org/10.1016/j.clinph.2012.03.001

    Article  Google Scholar 

  87. Lotfalinezhad, H., Maleki, A.: TTA, a new approach to estimate Hurst exponent with less estimation error and computational time. Phys. A 553, 124093 (2020). https://doi.org/10.1016/j.physa.2019.124093

    Article  Google Scholar 

  88. Truong, N.D., et al.: Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw. 105, 104–111 (2018). https://doi.org/10.1016/j.neunet.2018.04.018

    Article  Google Scholar 

  89. Zhang, Y., Guo, Y., Yang, P., Chen, W., Lo, B.: Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network. IEEE J. Biomed. Health Inform. 24(2), 465–474 (2020). https://doi.org/10.1109/JBHI.2019.2933046

    Article  Google Scholar 

  90. Karthick, P.A., Tanaka, H., Khoo, H.M., Gotman, J.: Could we have missed out the seizure onset: a study based on intracranial EEG. Clin. Neurophysiol. 131(1), 114–126 (2020). https://doi.org/10.1016/j.clinph.2019.10.011

    Article  Google Scholar 

  91. Machado, S., et al.: Prefrontal seizure classification based on stereo-EEG quantification and automatic clustering. Epilepsy Behav. 112, 107436 (2020). https://doi.org/10.1016/j.yebeh.2020.107436

    Article  Google Scholar 

  92. Cymerblit-Sabba, A., Schiller, Y.: Network dynamics during development of pharmacologically induced epileptic seizures in rats in vivo. J. Neurosci. 30(5), 1619–1630 (2010). https://doi.org/10.1523/JNEUROSCI.5078-09.2010

    Article  Google Scholar 

  93. Kramer, M.A., Eden, U.T., Kolaczyk, E.D., Zepeda, R., Eskandar, E.N., Cash, S.S.: Coalescence and fragmentation of cortical networks during focal seizures. J. Neurosci. 30(30), 10076–10085 (2010). https://doi.org/10.1523/JNEUROSCI.6309-09.2010

    Article  Google Scholar 

  94. Fisher, R.S., et al.: Operational classification of seizure types by the international league against epilepsy: position paper of the ILAE commission for classification and terminology. Epilepsia 58(4), 522–530 (2017). https://doi.org/10.1111/epi.13670

    Article  Google Scholar 

  95. Subasi, A., Ismail Gursoy, M.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666, (2010). https://doi.org/10.1016/j.eswa.2010.06.065

  96. Kane, N., et al.: A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017. Clin. Neurophysiol. Pract. 2, 170–185 (2017). https://doi.org/10.1016/j.cnp.2017.07.002

    Article  Google Scholar 

  97. Kural, M.A., et al.: Criteria for defining interictal epileptiform discharges in EEG: a clinical validation study. Neurology 94(20), e2139–e2147 (2020). https://doi.org/10.1212/WNL.0000000000009439

    Article  Google Scholar 

  98. Woodward, N.D., Cascio, C.J.: Resting-state functional connectivity in psychiatric disorders. JAMA Psychiat. 72(8), 743–744 (2015). https://doi.org/10.1001/jamapsychiatry.2015.0484

    Article  Google Scholar 

  99. Kakkos, I., et al.: Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Trans. Neural Syst. Rehabil. Eng. 27(9), 1704–1713 (2019). https://doi.org/10.1109/TNSRE.2019.2930082

    Article  Google Scholar 

  100. Schumacher, J., et al.: Dynamic functional connectivity changes in dementia with Lewy bodies and Alzheimer’s disease. NeuroImage: Clin. 22, 101812, (2019). https://doi.org/10.1016/j.nicl.2019.101812

  101. Dimitrakopoulos, G.N., et al.: Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 25(11), 1940–1949 (2017). https://doi.org/10.1109/TNSRE.2017.2701002

    Article  Google Scholar 

  102. Fraschini, M., Pani, S.M., Didaci, L., Marcialis, G.L.: Robustness of functional connectivity metrics for EEG-based personal identification over task-induced intra-class and inter-class variations. Pattern Recogn. Lett. 125, 49–54 (2019). https://doi.org/10.1016/j.patrec.2019.03.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aikaterini Karampasi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karampasi, A., Gkiatis, K., Kakkos, I., Garganis, K., Matsopoulos, G.K. (2022). Advances in Artificial Intelligence for the Identification of Epileptiform Discharges. In: Lim, CP., Vaidya, A., Jain, K., Mahorkar, V.U., Jain, L.C. (eds) Handbook of Artificial Intelligence in Healthcare. Intelligent Systems Reference Library, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-030-79161-2_1

Download citation

Publish with us

Policies and ethics

Navigation