Use of Pneumatic Artificial Muscles in a Passive Upper Body Exoskeleton

  • Conference paper
  • First Online:
New Trends in Medical and Service Robotics (MESROB 2021)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 106))

Included in the following conference series:

Abstract

This paper presents a preliminary study on a novel upper body exoskeleton conceived for human effort reduction in uncomfortable operations. The exoskeleton is constituted by a light wearable structure energized by two McKibben pneumatic artificial muscles, which could be used in passive (such as springs) or active mode (such as actuators). In this work, the modelling and the design of the exoskeleton is presented. The performance of the exoskeleton is evaluated considering two commercial McKibben muscles used in passive mode. The results underline that the exoskeleton can be adapted to compensate the weight of the upper limbs and a load in the hands of an operator under defined working conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perry, J., Rosen, J., Burns, S.: Upper-limb powered exoskeleton design. IEEE-ASME Trans. Mechatron. 12, 408–417 (2007)

    Article  Google Scholar 

  2. Panero, E., Muscolo, G.G., Pastorelli, S., Gastaldi, L.: Model based analysis of trunk exoskeleton for human efforts reduction. In: Berns, K., Görges, D. (eds.) RAAD 2019. AISC, vol. 980, pp. 410–418. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19648-6_47

    Chapter  Google Scholar 

  3. Muscolo, G.G., Marcheschi, S., Fontana, M., Bergamasco, M.: Dynamics modeling of human–machine control interface for underwater teleoperation. Robotica. 1–15 (2020).https://doi.org/10.1017/S0263574720000624

  4. Schiele, A., De Bartolomei, M., Van Der Helm, F.: Towards intuitive control of space robots: a ground development facility with exoskeleton. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Bei**g, pp. 1396–1401 (2006)

    Google Scholar 

  5. Riener, A., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biolocial Eng. Comput. 43, 2–10 (2005)

    Article  Google Scholar 

  6. Zoss, A., Kazerooni, H.: Design of an electrically actuated lower extremity exoskeleton. Adv. Robot. 20(9), 967–988 (2006)

    Article  Google Scholar 

  7. Schiele, A.: Ergonomics of exoskeletons: objective performance metrics. In: The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, USA, October 2009

    Google Scholar 

  8. Trono, G., Nicolì, A., Muscolo, G.G.: Sustainable compliant physical interaction in a biped-wheeled wearable machine. Front. Mech. Eng. 6, 581626 (2020). https://doi.org/10.3389/fmech.2020.581626

    Article  Google Scholar 

  9. Gull, M.A., Bai, S., Bak, T.: A review on design of upper limb exoskeletons. Robotics 9, 16 (2020). https://doi.org/10.3390/robotics9010016

    Article  Google Scholar 

  10. de Looze, M.P., Krause, F., O’Sullivan, L.W.: The potential and acceptance of exoskeletons in industry. In: Gonzalez-Vargas, J., Ibáñez, J., Contreras-Vidal, J.L., van der Kooij, H., Pons, J.L. (eds.) Wearable robotics: Challenges and trends. BB, vol. 16, pp. 195–199. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46532-6_32

    Chapter  Google Scholar 

  11. Wehner, M., et al.: Design and evaluation of a lightweight soft exosuit for gait assistance. In: IEEE International Conference on Robotics and Automation (2012)

    Google Scholar 

  12. Nef, T., Riener, R.: Shoulder actuation mechanisms for arm rehabilitation exoskeletons. In: 2008 2nd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE (2008)

    Google Scholar 

  13. Colombo, G., Joerg, M., Dietz, V.: Driven gait orthosis to do locomotor training of paraplegic patients. In: International Conference of the 22nd Annual EMBS, Chicago, IL, USA, 23–28 July 2000

    Google Scholar 

  14. Zoccali, A., Muscolo, G.G.: Comfort perception analysis of human models interfacing with novel biped-wheeled-exoskeletons. In: Rauter, G., Cattin, P.C., Zam, A., Riener, R., Carbone, G., Pisla, D. (eds.) MESROB 2020. MMS, vol. 93, pp. 21–28. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58104-6_3

    Chapter  Google Scholar 

  15. Hidler, J.M., Wall, A.E.: Alterations in muscle activation patterns during robotic-assisted walking. Clin. Biomech. 20, 184–193 (2005)

    Article  Google Scholar 

  16. Neckel, N.D., Blonien, N., Nichols, D., Hidler, J.M.: Abnormal joint torque patterns exhibited by chronik stroke subjects while walking with a prescribed physiological gait pattern. J. Neuro Eng. Rehabil. 5, 19 (2008). https://doi.org/10.1186/1743-0003-5-19

    Article  Google Scholar 

  17. Hall, Susan J. “Linear Kinematics of Human Movement.“ Basic Biomechanics. 6th Edition ed. New York, USA: McGraw Hill (2012): 319–354

    Google Scholar 

  18. Stani, M.M., Goehler, C.M.: Reproducing human arm motion using a kinematically coupled humanoid shoulder–elbow complex. Appl. Bionics Biomech. 5(4), 175–185 (2008)

    Article  Google Scholar 

  19. Muscolo, G.G., Caldwell, D., Cannella, F.: Biomechanics of human locomotion with constraints to design flexible-wheeled biped robots. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (IEEE), pp. 1273–1278 (2017)

    Google Scholar 

  20. Yang, L., Grooten, W.J.A., Forsman, M.: An iPhone application for upper arm posture and movement measurements. Appl. Ergon. 65, 492–500 (2017)

    Article  Google Scholar 

  21. Chou, C.-P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. Trans. Robot. Autom. 12, 90–102 (1996)

    Article  Google Scholar 

  22. Daerden, F.: Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements. Vrije Universiteit Brussel, p. 176 (1999)

    Google Scholar 

  23. Mižáková, J., Piteľ, J., Tóthová, M.: Pneumatic artificial muscle as actuator in mechatronic system. Appl. Mech. Mater. 460, 81–90 (2014)

    Article  Google Scholar 

  24. Ferraresi, C., Franco, W., Manuello, B.A.: Flexible pneumatic actuator: a comparison between the McKibben and the straight fibres muscle. J. Robot. Mechatron. 13(1), 56–63 (2001)

    Article  Google Scholar 

  25. Tóthová, M., Piteľ, J., Hošovský, A., Sárosi, J.: Numerical approximation of static characteristics of McKibben pneumatic artificial muscle. Int. J. Math. Comput. Simul. 9, 228–233 (2015)

    Google Scholar 

  26. Sárosi, J.: New approximation algorithm for the force of fluidic muscles. In: 2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 229–233. IEEE, May 2012

    Google Scholar 

  27. Ferraresi, C., Franco, W., Manuello Bertetto, A.: Modelisation and characterization of a pneumatic muscle actuator for non conventional robotics. In: 7th International Workshop on Robotics in Alpe-Adria-Danube Region. RAAD (1998)

    Google Scholar 

  28. Franco, W., Maffiodo, D., De Benedictis, C., Ferraresi, C.: Use of McKibben muscle in a haptic interface. Robotics 8(1), 13 (2019)

    Article  Google Scholar 

  29. De Benedictis, C., Franco, W., Maffiodo, D., Ferraresi, C.: Hand rehabilitation device actuated by a pneumatic muscle. Mech. Mach. Sci. 67, 102–111 (2019)

    Article  Google Scholar 

  30. Franco, W., Maffiodo, D., De Benedictis, C., Ferraresi, C.: Dynamic modeling and experimental validation of a haptic finger based on a McKibben muscle. Mech. Mach. Sci. 66, 251–259 (2019)

    Article  MathSciNet  Google Scholar 

  31. Visited on October 2020. http://lars.mec.ua.pt/public/LAR%20Projects/RobotActuation/2002_MarcoMelo_VascoQuinteiro/Projecto/Artigos_net/net/air%20muscles/Shadow%20Robot%20Company%20Air%20Muscles.htm

  32. Punnett, L., Fine, L.J., Keyserling, W.M., Herrin, G.D., Chaffin, D.B.: Shoulder disorders and postural stress in automobile assembly work. Scand. J. Work Environ. Health, 283–291 (2000)

    Google Scholar 

  33. Svendsen, S.W., Bonde, J.P., Mathiassen, S.E., Stengaard-Pedersen, K., Frich, L.H.: Work related shoulder disorders: quantitative exposure-response relations with reference to arm posture. Occup. Environ. Med. 61(10), 844–853 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Gerardo Muscolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lo Piccolo, M.V., Muscolo, G.G., Ferraresi, C. (2022). Use of Pneumatic Artificial Muscles in a Passive Upper Body Exoskeleton. In: Rauter, G., Carbone, G., Cattin, P.C., Zam, A., Pisla, D., Riener, R. (eds) New Trends in Medical and Service Robotics. MESROB 2021. Mechanisms and Machine Science, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-76147-9_9

Download citation

Publish with us

Policies and ethics

Navigation