Jasmonate: A Versatile Messenger in Plants

  • Chapter
  • First Online:
Jasmonates and Salicylates Signaling in Plants

Abstract

Jasmonic acid (JA) and its methyl ester, methyl jasmonates (MeJAs), is categorized under phytohormones. It is ubiquitously found all over the plant kingdom but varies in concentration from species to species. Chemically, it is known as derivatives of the fatty acid metabolism. JAs are synthesized from α-linolenic acid (α-LeA/18:3) via the octadecanoid pathway. JAs attached to its receptor, CORONATINE INSENSITIVE1 (COI1) triggers the signaling cascade and enables the expression of genes and generate various responses under stress and stress-free conditions. Moreover, JAs are known to regulate a wide range of physiological processes in plants such as plant growth, reproductive development and senescence. It also induces plant defense responses against various biotic stresses such as herbivore attack or pathogen infection. In this chapter, a summary of recent advances in our understanding of JA synthesis and signaling along with its role in regulating physiology of plant in presence or absence of biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

JA:

Jasmonic acid

MeJA:

Methyl jasmonates

α-LeA:

α-linolenic acid

JA-Ile:

Jasmonic Acid Isoleucine Conjugate

SA:

Salicylic acid

ABA:

Abscisic acid

OPDA:

12-Oxophytodienoic Acid

LOX:

Lipoxygenase

AOS:

Allen oxide synthase

AOC:

Allen oxide cyclase

OPC:

3-Oxo-2-(2-Pentenyl)-Cyclopentane

COT1:

CORONATINE INTENSITIVE1

OPR3:

OPDA Reductase

References

  • Adams E, Turner J (2010) COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light. J Exp Bot 61(15):4373–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19(5):1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad P, Rasool S, Gul A, Sheikh SA, Akram NA, Ashraf M, Kazi AM, Gucel S (2016) Jasmonates: multifunctional roles in stress tolerance. Front Plant Sci 7:813.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad S, Van Hulten M, Martin J, Pieterse CM, Van Wees SC, Ton J (2011) Genetic dissection of basal defence responsiveness in accessions of Arabidopsis thaliana. Plant, Cell Environ 34(7):1191–1206

    Article  CAS  Google Scholar 

  • Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C: Org:1623–1627

    Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenko O, Brunnström Å, McPhail KL, Gerwick WH, Go C, Feussner I, Ellerström M (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside E. J Biol Chem 281(42):31528–31537

    CAS  PubMed  Google Scholar 

  • Andolfi A, Maddau L, Cimmino A, Linaldeddu BT, Basso S, Deidda A, Serra S, Evidente A (2014) Lasiojasmonates A-C, three jasmonic acid esters produced by Lasiodiplodia sp., a grapevine pathogen. Phytochemistry 103:145–153

    Article  CAS  PubMed  Google Scholar 

  • Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48(3–4):148–170

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Akram NA, Arteca RN, Foolad MR (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Crit Rev Plant Sci 29(3):162–190

    Article  CAS  Google Scholar 

  • Avanci NC, Luche DD, Goldman GH, Goldman MHS (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9(1):484–505

    Article  CAS  PubMed  Google Scholar 

  • Baldwin IT (2010) Plant volatiles. Curr Biol 20(9):R392–R397

    Article  CAS  PubMed  Google Scholar 

  • Ballaré CL (2011) Jasmonate-induced defenses: a tale of intelligence, collaborators and rascals. Trends Plant Sci 16(5):249–257

    Article  PubMed  CAS  Google Scholar 

  • Band LR, Úbeda-Tomás S, Dyson RJ, Middleton AM, Hodgman TC, Owen MR, Jensen OE, Bennett MJ, King JR (2012) Growth-induced hormone dilution can explain the dynamics of plant root cell elongation. Proc Natl Acad Sci 109(19):7577–7582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci 92(19):8675–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender R, Klinkenberg P, Jiang Z, Bauer B, Karypis G, Nguyen N, Perera MAD, Nikolau BJ, Carter CJ (2012) Functional genomics of nectar production in the Brassicaceae. Flora-Morphol, Distrib, Funct Ecol Plants 207(7):491–496

    Article  Google Scholar 

  • Benedetti CE, **e D, Turner JG (1995) COI1-dependent expression of an Arabidopsis vegetative storage protein in flowers and siliques and in response to coronatine or methyl jasmonate. Plant Physiol 109(2):567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R (2002) Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J 29(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302(5652):1956–1960

    Article  CAS  PubMed  Google Scholar 

  • Bordenave CD, Escaray FJ, Menendez AB, Serna E, Carrasco P, Ruiz OA, Gárriz A (2013) Defense responses in two ecotypes of Lotus japonicus against non-pathogenic Pseudomonas syringae. PLoS One 8(12):

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boter M, Ruíz-Rivero O, Abdeen A, Prat S (2004) Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev 18(13):1577–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, Adam C (2017) Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171(2):287–304

    Article  CAS  PubMed  Google Scholar 

  • Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM (2003) A role for the GCC-box in jasmonate-mediated activation of the PDF1. 2 gene of Arabidopsis. Plant Physiol 132(2):1020–1032

    Google Scholar 

  • Browse J (2009a) Jasmonate: preventing the maize tassel from getting in touch with his feminine side. Sci Signaling 2(59):pe9

    Google Scholar 

  • Browse J (2009b) Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Plant Biol 60:183–205

    Article  CAS  PubMed  Google Scholar 

  • Browse J (2009c) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70(13–14):1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Browse J (2009d) Jasmonate passes muster: a receptor and targets for the defence hormone. Annu Rev Plant Biol 60:183–205

    Google Scholar 

  • Campos ML, Kang JH, Howe GA (2014) Jasmonate-triggered plant immunity. J Chem Ecol 40(7):657–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chehab EW, Yao C, Henderson Z, Kim S, Braam J (2012) Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 22(8):701–706

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Wang DD, Fang X, Chen XY, Mao YB (2019) Plant specialized metabolism regulated by Jasmonate signaling. Plant Cell Physiol 60(12):2638–2647

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Cimmino A, Masi M, Reveglia P, Nocera P, Solano R, Evidente A (2018a) The fungal phytotoxin lasiojasmonate A activates the plant jasmonic acid pathway. J Exp Bot 69(12):3095–3102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S, Reymond P, Weiss S, Stintzi A, Schaller A, Porzel A, García-Mina JM (2018b) An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis. Nat Chem Biol 14(2):171

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343(6168):290–294

    Article  CAS  PubMed  Google Scholar 

  • Chung HS, Koo AJ, Gao X, Jayanty S, Thines B, Jones AD, Howe GA (2008) Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol 146(3):952–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci 92(10):4114–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Biol 48(1):355–381

    Article  CAS  Google Scholar 

  • Dave A, Hernández ML, He Z, Andriotis VM, Vaistij FE, Larson TR, Graham IA (2011) 12-Oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23(2):583–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demole E, Lederer E, Mercier D (1962) Isolation and determination of the structure of methyl jasmonate, an odorous constituent characteristic of jasmine essence. Helv Chim Acta 45(2):675–685

    Article  CAS  Google Scholar 

  • De Rosa VE, Nogueira FTS, Menossi M, Ulian EC, Arruda P (2005). Identification of methyl jasmonate-responsive genes in sugarcane using cDNA arrays. Braz J Plant Physiol 17:173–180

    Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14(7):1557–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci 101(6):1781–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erb M, Glauser G, Robert CA (2012a) Induced immunity against belowground insect herbivores-activation of defenses in the absence of a jasmonate burst. J Chem Ecol 38(6):629–640

    Article  CAS  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012b) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17(5):250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falk KL, Kästner J, Bodenhausen N, Schramm K, Paetz C, Vassão DG, Reichelt M, Von Knorre D, Bergelson J, Erb M, Gershenzon J (2014) The role of glucosinolates and the jasmonic acid pathway in resistance of Arabidopsis thaliana against molluscan herbivores. Mol Ecol 23(5):1188–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraz K (2006) The effects of erabidopsis thaliana sulfotransferase 2a (AtST2a) over-expression on tuber formation. (Masters thesis, Concordia University)

    Google Scholar 

  • Farmer EE, Dubugnon L (2009) Detritivorous crustaceans become herbivores on jasmonate-deficient plants. Proc Natl Acad Sci 106(3):935–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Gasperini D, Acosta IF (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol 204(2):282–288

    Article  CAS  PubMed  Google Scholar 

  • Farrant JM, Ruelland E (2015) Plant signalling mechanisms in response to the environment. Environ Exp Bot 114:1–3

    Article  Google Scholar 

  • Felton GW, Tumlinson JH (2008) Plant–insect dialogs: complex interactions at the plant–insect interface. Curr Opin Plant Biol 11(4):457–463

    Article  CAS  PubMed  Google Scholar 

  • Ferrari S, Plotnikova JM, De Lorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Floková K, Feussner K, Herrfurth C, Miersch O, Mik V, Tarkowská D, Strnad M, Feussner I, Wasternack C, Novák O (2016) A previously undescribed jasmonate compound in flowering Arabidopsis thaliana—the identification of cis-(+)-OPDA-Ile. Phytochemistry 122:230–237

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5(5):344–350

    Article  CAS  PubMed  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146(3):818–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng X, Cheng J, Gangadharan A, Mackey D (2012) The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 24(11):4763–4774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gidda KS, Miersch O, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxy-jasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900

    Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender JL, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284(50):34506–34513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Goossens J, Fernández-Calvo P, Schweizer F, Goossens A (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91(6):673–689

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, G. (2020). Jasmonates: biosynthesis, perception and signal transduction. In: Essays in Biochemistry

    Google Scholar 

  • Hao J, Tu L, Hu H, Tan J, Deng F, Tang W, Nie Y, Zhang X (2012) GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J Exp Bot 63(17):6267–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Fukushige H, Hildebrand DF, Gan S (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128(3):876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil M, Land WG (2014) Danger signals—damaged-self recognition across the tree of life. Front Plant Sci 5:578

    Article  PubMed  PubMed Central  Google Scholar 

  • Hind SR, Pulliam SE, Veronese P, Shantharaj D, Nazir A, Jacobs NS, Stratmann JW (2011) The COP9 signalosome controls jasmonic acid synthesis and plant responses to herbivory and pathogens. Plant J 65(3):480–491

    Article  CAS  PubMed  Google Scholar 

  • Howe GA (2008) New weapons and a rapid response against insect attack. Plant Physiol 146(3):832–838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Huffaker A, Pearce G, Veyrat N, Erb M, Turlings TC, Sartor R, Shen Z, Briggs SP, Vaughan MM, Alborn HT, Teal PE (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proc Natl Acad Sci 110(14):5707–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Modarres Sanavy SAM, Allahdadi I (2011) The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci 5(6):726

    CAS  Google Scholar 

  • Jia C, Zhang L, Liu L, Wang J, Li C, Wang Q (2013) Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternata f. sp. lycopersici. J Exp Bot 64(2):637–650

    Google Scholar 

  • Kandoth PK, Ranf S, Pancholi SS, Jayanty S, Walla MD, Miller W, Howe GA, Lincoln DE, Stratmann JW (2007) Tomato MAPKs LeMPK1, LeMPK2, and LeMPK3 function in the systemin-mediated defense response against herbivorous insects. Proc Natl Acad Sci 104(29):12205–12210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JH, Liu G, Shi F, Jones AD, Beaudry RM, Howe GA (2010) The tomato odorless-2 mutant is defective in trichome-based production of diverse specialized metabolites and broad-spectrum resistance to insect herbivores. Plant Physiol 154(1):262–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci 105(19):7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci 17(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6(3):686–703

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Tsuda K, Igarashi D, Hillmer RA, Sakakibara H, Myers CL, Katagiri F (2014) Mechanisms underlying robustness and tunability in a plant immune signaling network. Cell Host Microbe 15(1):84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo AJ, Howe GA (2012) Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front Plant Sci 3:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo AJ, Gao X, Daniel Jones A, Howe GA (2009) A rapid wound signal activates the systemic synthesis of bioactive jasmonates in Arabidopsis. Plant J 59(6):974–986

    Article  CAS  PubMed  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11(4):263–274

    Article  CAS  PubMed  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Google Scholar 

  • Lackman P, González-Guzmán M, Tilleman S, Carqueijeiro I, Pérez AC, Moses T, Seo M, Kanno Y, Häkkinen ST, Van Montagu MC, Thevelein JM (2011) Jasmonate signaling involves the abscisic acid receptor PYL4 to regulate metabolic reprogramming in Arabidopsis and tobacco. Proc Natl Acad Sci 108(14):5891–5896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalotra S, Hemantaranjan A, Yashu BR, Srivastava R, Kumar S (2020) Jasmonates: an emerging approach in biotic and abiotic stress tolerance. In: Plant science-structure, anatomy and physiology in plants cultured in vivo and in vitro. IntechOpen

    Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16(1):126–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang K, Meng Y, Hu J, Ding M, Bian J, Yan M, Han J, Zhou M (2018) Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA 59 transcription factor. Plant J 95(3):444–457

    Article  CAS  PubMed  Google Scholar 

  • Liechti R, Farmer E (2006) Jasmonate biochemical pathway. Sci STKE 322:3

    Google Scholar 

  • Liu F, Jiang H, Ye S, Chen WP, Liang W, Xu Y, Sun B, Sun J, Wang Q, Cohen JD, Li C (2010) The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Res 20(5):539–552

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li X, **ao J, Wang S (2012) A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods 8(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16(7):1938–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mafli A, Goudet J, Farmer EE (2012) Plants and tortoises: mutations in the Arabidopsis jasmonate pathway increase feeding in a vertebrate herbivore. Mol Ecol 21(10):2534–2541

    Article  PubMed  Google Scholar 

  • Mandaokar A, Thines B, Shin B, Markus Lange B, Choi G, Koo YJ, Yoo YJ, Choi YD, Choi G, Browse J (2006) Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling. Plant J 46(6):984–1008

    Article  CAS  PubMed  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139(2):949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meldau S, Erb M, Baldwin IT (2012) Defence on demand: mechanisms behind optimal defence patterns. Ann Bot 110(8):1503–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memelink J (2009) Regulation of gene expression by jasmonate hormones. Phytochemistry 70(13–14):1560–1570

    Article  CAS  PubMed  Google Scholar 

  • Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138(2):1149–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miersch O, Bohlmann H, Wasternack C (1999) Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry 50(4):517–523

    Article  CAS  Google Scholar 

  • Mithöfer A, Boland W (2008) Recognition of herbivory-associated molecular patterns. Plant Physiol 146(3):825–831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  • Moffat CS, Ingle RA, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against Botrytis cinerea in Arabidopsis. PLoS One 7(4):

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monte I, Ishida S, Zamarreño AM, Hamberg M, Franco-Zorrilla JM, García-Casado G, Gouhier-Darimont C, Reymond P, Takahashi K, García-Mina JM, Nishihama R (2018) Ligand-receptor co-evolution shaped the jasmonate pathway in land plants. Nat Chem Biol 14(5):480–488

    Article  CAS  PubMed  Google Scholar 

  • Mosblech A, Thurow C, Gatz C, Feussner I, Heilmann I (2011) Jasmonic acid perception by COI1 involves inositol polyphosphates in Arabidopsis thaliana. Plant J 65(6):949–957

    Article  CAS  PubMed  Google Scholar 

  • Murray JA, Jones A, Godin C, Traas J (2012) Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling. Plant Cell 24(10):3907–3919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47(1):176–180

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Bari R, Achard P, Lisón P, Nemri A, Harberd NP, Jones JD (2008) DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr Biol 18(9):650–655

    Article  CAS  PubMed  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1. 2 transcription. Plant J 50(1):128–139

    Google Scholar 

  • Nguyen CT, Martinoia E, Farmer EE (2017) Emerging jasmonate transporters. Molecular plant 10(5):659–661

    Article  CAS  PubMed  Google Scholar 

  • Nilsson AK, Fahlberg P, Johansson ON, Hamberg M, Andersson MX, Ellerström M (2016) The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis. J Exp Bot 67(17):5133–5144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogorodnikova AV, Mukhitova FK, Grechkin AN (2015) Oxylipins in the spikemoss Selaginella martensii: detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones. Phytochemistry 118:42–50

    Article  CAS  PubMed  Google Scholar 

  • Oliw EH, Hamberg M (2017) An allene oxide and 12-oxophytodienoic acid are key intermediates in jasmonic acid biosynthesis by Fusarium oxysporum. J Lipid Res 58(8):1670–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacheco R, García-Marcos A, Manzano A, de Lacoba MG, Camañes G, García-Agustín P, Díaz-Ruíz JR, Tenllado F (2012) Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol Plant Microbe Interact 25(5):709–723

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56

    Article  CAS  Google Scholar 

  • Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23(9):3089–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Morreel K, De Witte E, Lammertyn F, Van Montagu M, Boerjan W, Inzé D, Goossens A (2008) Map** methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci 105(4):1380–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009) Jasmonate-inducible gene: what does it mean? Trends Plant Sci 14(2):87–91

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, García-Casado G (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464(7289):788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelacho AM, Mingo-Castel AM (1991) Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiol 97(3):1253–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis root development. Annu Rev Plant Biol 63:563–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Google Scholar 

  • Pirbalouti AG, Mirbagheri H, Hamedi B, Rahimi E (2014) Antibacterial activity of the essential oils of myrtle leaves against Erysipelothrix rhusiopathiae. Asian Pac J Trop Biomed 4:S505–S509

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratiwi P, Tanaka G, Takahashi T, **e X, Yoneyama K, Matsuura H, Takahashi K (2017) Identification of jasmonic acid and jasmonoyl-isoleucine, and characterization of AOS, AOC, OPR and JAR1 in the model lycophyte Selaginella moellendorffii. Plant Cell Physiol 58(4):789–801

    Article  CAS  PubMed  Google Scholar 

  • Pré M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147(3):1347–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, Ren C, **e D (2011) The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23(5):1795–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radhika V, Kost C, Boland W, Heil M (2010) The role of jasmonates in floral nectar secretion. PLoS One 5(2):

    Article  PubMed  PubMed Central  Google Scholar 

  • Ranjan R, Lewak S (1992) Jasmonic acid promotes germination and lipase activity in non-stratified apple embryos. Physiol Plant 86(2):335–339

    Article  CAS  Google Scholar 

  • Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA, Felton GW, Jander G (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158(2):854–863

    Article  CAS  PubMed  Google Scholar 

  • Reid DE, Heckmann AB, Novák O, Kelly S, Stougaard J (2016) CYTOKININ OXIDASE/DEHYDROGENASE3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus. Plant Physiol 170(2):1060–1074

    Article  CAS  PubMed  Google Scholar 

  • Reinbothe C, Springer A, Samol I, Reinbothe S (2009) Plant oxylipins: role of jasmonic acid during programmed cell death, defence and leaf senescence. The FEBS J 276(17):4666–4681

    Article  CAS  PubMed  Google Scholar 

  • Rymen B, Sugimoto K (2012) Tuning growth to the environmental demands. Curr Opin Plant Biol 15(6):683–690

    Article  PubMed  Google Scholar 

  • Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, Pastor V, Flors V (2013) Jasmonate signaling in plant development and defense response to multiple (a) biotic stresses. Plant Cell Rep 32(7):1085–1098

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8(4):153–161

    Article  CAS  PubMed  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P, Chételat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6(9):p.e230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweizer F, Fernández-Calvo P, Zander M, Diez-Diaz M, Fonseca S, Glauser G, Lewsey MG, Ecker JR, Solano R, Reymond P (2013) Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell 25(8):3117–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehr EM, Agusti J, Lehner R, Farmer EE, Schwarz M, Greb T (2010) Analysis of secondary growth in the Arabidopsis shoot reveals a positive role of jasmonate signalling in cambium formation. Plant J 63(5):811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY (2010) Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468(7322):400–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigeyama T, Tominaga A, Arima S, Sakai T, Inada S, Jikumaru Y, Kamiya Y, Uchiumi T, Abe M, Hashiguchi M, Akashi R (2012) Additional cause for reduced JA-Ile in the root of a Lotus japonicus phyB mutant. Plant Signaling & Behavior 7(7):746–748

    Article  CAS  Google Scholar 

  • Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ (2012) TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 24(6):2470–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soares AMDS, Souza TFD, Jacinto T, Machado OLT (2010) Effect of methyl jasmonate on antioxidative enzyme activities and on the contents of ROS and H2O2 in Ricinus communis leaves. Braz J Plant Physiol 22(3):151–158

    Article  Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci 104(47):18842–18847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staswick PE (1989) Developmental regulation and the influence of plant sinks on vegetative storage protein gene expression in soybean leaves. Plant Physiol 89:309–315

    Google Scholar 

  • Staswick PE (1994) Storage proteins of vegetative plant tissues. Annu Rev Plant Biol 45(1):303–322

    Article  CAS  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16(8):2117–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C (2012) ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue-and organ-specific promoter activities and in vivo heteromerization. J Exp Bot 63(17):6125–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124(2):531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpe M, Göbel C, Faltin B, Beike AK, Hause B, Himmelsbach K, Bode J, Kramell R, Wasternack C, Frank W, Reski R (2010) The moss Physcomitrella patens contains cyclopentenones but no jasmonates: mutations in allene oxide cyclase lead to reduced fertility and altered sporophyte morphology. New Phytol 188(3):740–749

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46(6):961–970

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21(5):1495–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Chen Q, Qi L, Jiang H, Li S, Xu Y, Liu F, Zhou W, Pan J, Li X, Palme K (2011) Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol 191(2):360–375

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, Yonezawa M, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K (2007) The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell 19(3):805–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, Yagi K, Sakurai N, Suzuki H, Masuda T, Takamiya KI (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139(3):1268–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe MR, Ferrieri AP, Herth MM, Ferrieri RA (2007) 11 C-imaging: methyl jasmonate moves in both phloem and xylem, promotes transport of jasmonate, and of photoassimilate even after proton transport is decoupled. Planta 226(2):541

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Tooker J, Peiffer M, Chung SH, Felton GW (2012) Role of trichomes in defense against herbivores: comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236(4):1053–1066

    Article  CAS  PubMed  Google Scholar 

  • Tong X, Qi J, Zhu X, Mao B, Zeng L, Wang B, Li Q, Zhou G, Xu X, Lou Y, He Z (2012) The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. Plant J 71(5):763–775

    Article  CAS  PubMed  Google Scholar 

  • Tretner C, Huth U, Hause B (2008) Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid. J Exp Bot 59(10):2847–2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci 104(3):1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukada K, Takahashi K, Nabeta K (2010) Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae. Phytochemistry 71(17–18):2019–2023

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(suppl 1):S153–S164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchiyama A, Yaguchi T, Nakagawa H, Sasaki K, Kuwata N, Matsuura H, Takahashi K (2018) Biosynthesis and in vitro enzymatic synthesis of the isoleucine conjugate of 12-oxo-phytodienoic acid from the isoleucine conjugate of α-linolenic acid. Bioorg Med Chem Lett 28(6):1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66(2):246–249

    Google Scholar 

  • Uppalapati SR, Ishiga Y, Wangdi T, Kunkel BN, Anand A, Mysore KS, Bender CL (2007) The phytotoxin coronatine contributes to pathogen fitness and is required for suppression of salicylic acid accumulation in tomato inoculated with Pseudomonas syringae pv. tomato DC3000. Mol Plant-Microbe Interact 20(8):955–965

    Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flügge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Verk MC, Bol JF, Linthorst HJ (2011) Prospecting for genes involved in transcriptional regulation of plant defenses, a bioinformatics approach. BMC Plant Biol 11(1):88

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verhage A, van Wees SC, Pieterse CM (2010) Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 154(2):536–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhage A, Vlaardingerbroek I, Raaijmakers C, Van Dam N, Dicke M, Van Wees S, Pieterse CM (2011) Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory. Front Plant Sci 2:47

    Article  PubMed  PubMed Central  Google Scholar 

  • Vick BA, Zimmerman DC (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun 111(2):470–477

    Article  CAS  PubMed  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75(2):458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Guo Q, Froehlich JE, Hersh HL, Zienkiewicz A, Howe GA, Benning C (2018) Two abscisic acid-responsive plastid lipase genes involved in jasmonic acid biosynthesis in Arabidopsis thaliana. Plant Cell 30(5):1006–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Feussner I (2018) The oxylipin pathways: biochemistry and function. Annu Rev Plant Biol 69:363–386

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Forner S, Strnad M, Hause B (2013) Jasmonates in flower and seed development. Biochimie 95:79–85

    Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111(6):1021–1058

    Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5(1):63–77

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Strnad M (2016) Jasmonate signaling in plant stress responses and development—active and inactive compounds. New Biotechnol 33(5):604–613

    Article  CAS  Google Scholar 

  • Wasternack C, Strnad M (2018) Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds. Int J Mol Sci 19(9):2539

    Article  PubMed Central  CAS  Google Scholar 

  • Wasternack C, Goetz S, Hellwege A, Forner S, Strnad M, Hause B (2012) Another JA/COI1-independent role of OPDA detected in tomato embryo development. Plant signaling & behavior 7(10):1349–1353

    Article  CAS  Google Scholar 

  • Wei J, Yan L, Ren QIN, Li C, Ge F, Kang LE (2013) Antagonism between herbivore-induced plant volatiles and trichomes affects tritrophic interactions. Plant, Cell Environ 36(2):315–327

    Article  CAS  Google Scholar 

  • Wittenbach VA (1983) Purification and characterization of a soybean leaf storage glycoprotein. Plant Physiol 73(1):125–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19(3):1096–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, … **e D (2002) The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis. Plant Cell 14(8):1919–1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y, Huffaker A (2011) Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol 14(4):351–357

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Ohshika J, Takahashi T, Ishizaki K, Kohchi T, Matusuura H, Takahashi K (2015) Functional analysis of allene oxide cyclase, MpAOC, in the liverwort Marchantia polymorpha. Phytochemistry 116:48–56

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Abe H, Takahashi N (1982) Jasmonic acid and methyl jasmonate in pollens and anthers of three Camellia species. Plant Cell Physiol 23(6):1125–1127

    CAS  Google Scholar 

  • Yan C, **e D (2015) Jasmonate in plant defence: sentinel or double agent? Plant Biotechnol J 13(9):1233–1240

    Article  PubMed  Google Scholar 

  • Yang DH, Hettenhausen C, Baldwin IT, Wu J (2012a) Silencing Nicotiana attenuata calcium-dependent protein kinases, CDPK4 and CDPK5, strongly up-regulates wound-and herbivory-induced jasmonic acid accumulations. Plant Physiol 159(4):1591–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, … Lee CM (2012b) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Natl Acad Sci 109(19):E1192–E1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136(6):1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Zander M, La Camera S, Lamotte O, Métraux JP, Gatz C (2010) Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant J 61(2):200–210

    Article  CAS  PubMed  Google Scholar 

  • Zhang YI, Turner JG (2008) Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLoS One 3(11):

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Zhang F, Melotto M, Yao J, He SY (2017) Jasmonate signaling and manipulation by pathogens and insects. J Exp Bot 68(6):1371–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Demeshko Y, Dumbur R, Iven T, Feussner I, Lebedov G, … Ben-Hayyim G (2019) Elevated α-linolenic acid content in extra-plastidial membranes of tomato accelerates wound-induced jasmonate generation and improves tolerance to the herbivorous insects heliothis peltigera and spodoptera littoralis. J Plant Growth Regul 38(2):723–738

    Article  CAS  Google Scholar 

  • Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, … Dong X (2012) Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation. Cell Host Microbe 11(6):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Behrendt J, Sutherland AJ, Griffiths G (2011) Synthetic molecular mimics of naturally occurring cyclopentenones exhibit antifungal activity towards pathogenic fungi. Microbiology 157(12):3435–3445

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, … Scheres B (2019) A jasmonate signaling network activates root stem cells and promotes regeneration. Cell 177(4):942–956

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from CSIR and UGC, New Delhi, Govt. of India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Arif, Y., Siddiqui, H., Hayat, S. (2021). Jasmonate: A Versatile Messenger in Plants. In: Aftab, T., Yusuf, M. (eds) Jasmonates and Salicylates Signaling in Plants. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-75805-9_7

Download citation

Publish with us

Policies and ethics

Navigation