Log in

Elevated α-Linolenic Acid Content in Extra-plastidial Membranes of Tomato Accelerates Wound-Induced Jasmonate Generation and Improves Tolerance to the Herbivorous Insects Heliothis peltigera and Spodoptera littoralis

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In tomato, desaturation of linoleic acid (18:2) to α-linolenic acid (18:3) is mediated in the plastidial membranes by the ω-3 fatty acid desaturases 7 (FAD7), and in the ER membrane by its paralog FAD3. According to the prevalent model, the hormone jasmonic acid isoleucine (JA-Ile), which plays a key role in the plant response to various stresses, including wounding and herbivores attack, is derived from 18:3 which is released from the plastidial membrane glycerolipids. The current work aimed at assessing in tomato the effects of ectopic FAD3 over-expression or SlFAD7 silencing on herbivore tolerance and on wound response. The tomato SlFAD7 gene encoding for the plastidial-residing FAD7 was silenced by RNA interference, and enhanced expression of the extra-plastidial ER-residing FAD3 was induced by ectopic expression of BnFAD3. Over-expression of BnFAD3 led to increase, whereas SlFAD7 silencing led to decrease in 18:3 content in the extra-plastidial and plastidial membrane, respectively. As anticipated, silencing SlFAD7 attenuated the accumulation of JA-Ile following wounding, and enhanced susceptibility to two important pest insects: the chewing herbivores Spodoptera littoralis and Heliothis peltigera. Unexpected was the finding that ectopic over-expression of the extra-plastidial ER-residing FAD3 accelerated both wound-induced JA-Ile accumulation and expression of wound-response marker genes. Furthermore, BnFAD3 over-expression significantly improved the tomato tolerance to these two chewing herbivores. The presented information supports the notion that 18:3 derived from extra-plastidial membranes may serve as a substrate for, or as a source for a cue triggering, JA-Ile biosynthesis in response to wounding and insect chewing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Ohnishi J, Narusaka M, Seo S, Narusaka Y, Tsuda S, Kobayashi M (2008) Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. Plant Cell Physiol 49:68–80

    Article  CAS  PubMed  Google Scholar 

  • Ameye M, Allmann S, Verwaeren J, Smagghe G, Haesaert G, Schuurink RC, Audenaert K (2017) Green leaf volatile production by plants: a meta-analysis. New Phytol. https://doi.org/10.1111/nph.14671

    Article  PubMed  Google Scholar 

  • Andreu V, Collados R, Testillano PS, Risueño MC, Picorel R, Alfonso M (2007) In situ molecular identification of the plastid omega3 fatty acid desaturase FAD7 from soybean: evidence of thylakoid membrane localization. Plant Physiol 145:1336–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awai K, Xu C, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y (2005) The tomato early fruit specific gene Lefsm1 defines a novel class of plant-specific SANT/MYB domain proteins. Planta 221:197–211

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BO, Laxalt AM, ter Riet B, Testerink C, Merquiol E, Mosblech A, Leon-Reyes A, Pieterse CM, Haring MA, Heilmann I, Bartels D, Munnik T (2009) Reassessing the role of phospholipase D in the Arabidopsis wounding response. Plant Cell Environ 32:837–850

    Article  CAS  PubMed  Google Scholar 

  • Berberich T, Harada M, Sugawara K, Kodama H, Iba K, Kusano T (1998) Two maize genes encoding omega-3 fatty acid desaturase and their differential expression to temperature. Plant Mol Biol 36:297–306

    Article  CAS  PubMed  Google Scholar 

  • Bergey DR, Howe GA, Ryan CA (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc Natl Acad Sci USA 93:12053–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browse J, McConn M, James D, Miquel M (1993) Mutants of Arabidopsis deficient in the synthesis of a-linolenate: biological and genetic characterization of the endoplasmic reticulum linoleoyl desaturase. J Biol Chem 268:16345–16351

    CAS  PubMed  Google Scholar 

  • Bruckhoff V, Haroth S, Feussner K, König S, Brodhun F, Feussner I (2016) Functional characterization of cyp94-genes and identification of a novel jasmonate catabolite in flowers. PLoS ONE 11:e0159875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caarls L, Pieterse CM, Van Wees SC (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA (2005) Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Natl Acad Sci USA 102:19237–19242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chini A, Monte I, Zamarreño AM, Hamberg M, Lassueur S, Reymond P, Weiss S, Stintzi A, Schaller A, Porzel A, García-Mina JM, Solano R (2018) Identification of an OPR3-independent pathway for jasmonate biosynthesis. Nat Chem Biol 14:171–178

    Article  CAS  PubMed  Google Scholar 

  • Christensen SA, Nemchenko A, Borrego E, Murray I, Sobhy IS, Bosak L, DeBlasio S, Erb M, Robert CA, Vaughn KA, Herrfurth C, Tumlinson J, Feussner I, Jackson D, Turlings TC, Engelberth J, Nansen C, Meeley R, Kolomiets MV (2013) The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J 74:59–73

    Article  CAS  PubMed  Google Scholar 

  • Collados R, Andreu V, Picorel R, Alfonso M (2006) A light-sensitive mechanism differently regulates transcription and transcript stability of x3 fatty-acid desaturases (FAD3, FAD7 and FAD8) in soybean photosynthetic cell suspensions. FEBS Lett 580:4934–4940

    Article  CAS  PubMed  Google Scholar 

  • Conconi A, Miquel M, Browse JA, Ryan CA (1996) Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • De Domenico S, Tsesmetzis N, Di Sansebastiano GP, Hughes RK, Casey R, Santino A (2007) Subcellular localisation of Medicago truncatula 9/13-hydroperoxide lyase reveals a new localisation pattern and activation mechanism for CYP74C enzymes. BMC Plant Biol 7:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demchenko K, Zdyb A, Feussner I, Pawlowski K (2012) Analysis of the subcellular localisation of lipoxygenase in legume and actinorhizal nodules. Plant Biol 14:56–63

    CAS  PubMed  Google Scholar 

  • Domínguez T, Hernández ML, Pennycooke JC, Jiménez P, Martínez-Rivas JM, Sanz C, Stockinger EJ, Sánchez-Serrano JJ, Sanmartín M (2010) Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153:655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunkelblum E, Kehat M (1989) Female sex pheromone components of Heliothis peltigera (Lepidoptera: Noctuidae) chemical identification from gland extracts and male response. ‎J Chem Ecol 15:2233–2245

    Article  CAS  PubMed  Google Scholar 

  • Dyer JM, Mullen RT (2001) Immunocytological localization of two plant fatty acid desaturases in the endoplasmic reticulum. FEBS Lett 494:44–47

    Article  CAS  PubMed  Google Scholar 

  • Ellinger D, Stingl N, Kubigsteltig II, Bals T, Juenger M, Pollmann S, Berger S, Schuenemann D, Mueller MJ (2010) DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation. Plant Physiol 153:14–127

    Article  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic Acid. Plant Physiol 98:995–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Froehlich JE, Itoh A, Howe GA (2001) Tomato allene oxide synthase and fatty acid hydroperoxide lyase, two cytochrome P450s involved in oxylipin metabolism, are targeted to different membranes of chloroplast envelope. Plant Physiol 125:306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical pathway. Sci Signal 3:cm4

    PubMed  Google Scholar 

  • Ghanim M, Lebedev G, Kontsedalov S, Ishaaya I (2011) Flufenerim, a novel insecticide acting on diverse insect pests: biological mode of action and biochemical aspects. J Agric Food Chem 59:2839–2844

    Article  CAS  PubMed  Google Scholar 

  • Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz S, Hellwege A, Stenzel I, Kutter C, Hauptmann V, Forner S, McCaig B, Hause G, Miersch O, Wasternack C, Hause B (2012) Role of cis-12-oxo-phytodienoic acid in tomato embryo development. Plant Physiol 158:1715–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goossens J, Ferna´ndez-Calvo P, Schweizer F, Goossens A (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91:673–689

    Article  CAS  PubMed  Google Scholar 

  • Halitschke R, Baldwin IT (2005) Jasmonates and related compounds in plant-insect interactions. J Plant Growth Reg 23:238–245

    Article  CAS  Google Scholar 

  • Horowitz AR, Weintraub PG, Ishaaya I (1998) Status of pesticide resistance in arthropod pests in Israel. Phytoparasitica 26:231–240

    Article  Google Scholar 

  • Hou Q, Ufer G, Bartels D (2016) Lipid signalling in plant responses to abiotic stress. Plant Cell Environ 39:1029–1048

    Article  CAS  PubMed  Google Scholar 

  • Howe GA (2018) Metabolic end run to jasmonate. Nature Chem Biol 14:109–110

    Article  CAS  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iven T, König S, Singh S, Braus-Stromeyer SA, Bischoff M, Tietze LF, Braus GH, Lipka V, Feussner I, Dröge-Laser W (2012) Transcriptional activation and production of tryptophan-derived secondary metabolites in Arabidopsis roots contributes to the defense against the fungal vascular pathogen Verticillium longisporum. Mol Plant 5:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Kang JH, Wang L, Giri A, Baldwin IT (2006) Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell 18:3303–3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimzadeh J, Mohammadipou A (2011) Studies on population dynamics and regulatory factors (biotic vs. abiotic and bottom-up vs. top-down) of the pest species belonging to genera Helicoverpa and Heliothis (Lepidoptera: Noctuidae) on cotton, chickpea and tomato [2011]. http://agris.fao.org/agris-search/search.do?recordID=IR2012014242

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Koo AJ, Thireault C, Zemelis S, Poudel AN, Zhang T, Kitaoka N, Brandizzi F, Matsuura H, Howe GA (2014) Endoplasmic reticulum-associated inactivation of the hormone jasmonoyl-L-isoleucine by multiple members of the cytochrome P450 94 family in Arabidopsis. J Biol Chem 289:29728–29738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebedev G, Gafni G, Ben-Yakir D, Ghanim M (2012) High-level of resistance to spinosad, emamectin benzoate and carbosulfan in populations of Thrips tabaci collected in Israel. Pest Manag Sci 69:274–277

    Article  CAS  PubMed  Google Scholar 

  • Lee KR, Lee Y, Kim EH, Lee SB, Roh KH, Kim JB, Kang HC, Kim HU (2016) Functional identification of oleate 12-desaturase and ω-3 fatty acid desaturase genes from Perilla frutescens var. frutescens. Plant Cell Rep 35:2523–2537

    Article  CAS  PubMed  Google Scholar 

  • León J (2013) Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem 69:299–313

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99:6416–6421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Liu G, Xu C, Lee GI, Bauer P, Ling H-Q, Gana MW, Howe GA (2003) The Tomato Suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15:1646–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XR, Li HJ, Yuan L, Liu M, Shi DQ, Liu J, Yang WC (2014) Arabidopsis DAYU/ABERRANT PEROXISOME MORPHOLOGY9 is a key regulator of peroxisome biogenesis and plays critical roles during pollen maturation and germination in planta. Plant Cell 26:619–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machemer K, Shaiman O, Salts Y, Shabtai S, Sobolev I, Belausov E, Grotewold E, Barg R (2011) Interplay of MYB factors in differential cell expansion, and consequences for tomato fruit development. Plant J 68:337–350

    Article  CAS  PubMed  Google Scholar 

  • Matsuda O, Sakamoto H, Hashimoto T, Iba K (2005) A temperature-sensitive mechanism that regulates post-translational stability of a plastidial omega-3 fatty acid desaturase (FAD8) in Arabidopsis leaf tissues. J Biol Chem 280:3597–3604

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Kurishita S, Hisamitsu A, Kajiwara T (2000) A lipid-hydrolysing activity involved in hexenal formation. Biochem Soc Trans 28:857–860

    Article  CAS  PubMed  Google Scholar 

  • Matsui K, Sugimoto K, Mano J, Ozawa R, Takabayashi J (2012) Differential metabolisms of green leaf volatiles in injured and intact parts of a wounded leaf meet distinct ecophysiological requirements. PLoS ONE 7:e36433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney AW, Dyer JM, Dhanoa PK, Kim PK, Andrews DW, McNew JA, Mullen RT (2004) Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. Plant J 37:156–173

    Article  CAS  PubMed  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linolenic acid is pollen development, not photosynthesis, in an arabidopsis mutant. Plant Cell 8:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McConn M, Creelman RA, Bell E, Mullet JE, Browse J (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA 94:5473–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. J Biol Chem 267:1502–1509

    CAS  PubMed  Google Scholar 

  • Mita G, Quarta A, Fasano P, De Paolis A, Di Sansebastiano GP, Perrotta C, Iannacone R, Belfield E, Hughes R, Tsesmetzis N, Casey R, Santino A (2005) Molecular cloning and characterization of an almond 9-hydroperoxide lyase, a new CYP74 targeted to lipid bodies. J Exp Bot 56:2321–2333

    Article  CAS  PubMed  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Ryan CA (1990) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopathol 28:425–449

    Article  CAS  Google Scholar 

  • Samach A, Hareven D, Gutfinger T, Ken-Dror S, Lifschitz E (1991) Biosynthetic threonine deaminase gene of tomato: isolation, structure, and upregulation in floral organs. Proc Natl Acad Sci USA 88:2678–2682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Hernández C, López MG, Délano-Frier JP (2006) Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ 29:546–557

    Article  CAS  PubMed  Google Scholar 

  • Shorey HH, Hale RL (1965) Mass-rearing of the larvae of nine noctuid species on a simple artificial Medium. J Econ Entomol 58:522–524

    Article  Google Scholar 

  • Stotz HU, Koch T, Biedermann A, Weniger K, Boland W, Mitchell-Olds T (2002) Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214:648–652

    Article  CAS  PubMed  Google Scholar 

  • ul Hassan MN, Zainal Z, Ismail I (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J 13:727–739

    Article  CAS  PubMed  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • van de Ven WTG, LeVesque CS, Perring TM, Walling LL (2000) Local and systemic changes in squash gene expression in response to silverleaf whitefly feeding. Plant Cell 12:1409–1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Vos IA, Pieterse CMJ, Van Wees SCM (2013) Costs and benefits of hormone-regulated plant defences. Plant Pathol 62:43–55

    Article  Google Scholar 

  • Walley JW, Kliebenstein DJ, Bostock RM, Dehesh K (2013) Fatty acids and early detection of pathogens. Curr Opi Plant Biol 16:520–526

    Article  CAS  Google Scholar 

  • Wallis JG, Browse J (2002) Mutants of Arabidopsis reveal many roles for membrane lipids. Prog Lipid Res 41:254–278

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Avdiushko S, Hildebrand DF (1999) Overexpression of a cytoplasm-localized allene oxide synthase promotes the wound-induced accumulation of jasmonic acid in transgenic tobacco. Plant Mol Biol 40:783–793

    Article  CAS  PubMed  Google Scholar 

  • Wang HS, Yu C, Tang XF, Wang LY, Dong XC, Meng QW (2010) Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 52:568–577

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack C, Hause B (2018) A Bypass in jasmonate in biosynthesis—the OPR3-independent formation. Trends Plant Sci 23:276–279

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Strnad M (2016) Jasmonate signaling in plant stress responses and development—active and inactive compounds. New Biotechnol 33:604–613

    Article  CAS  Google Scholar 

  • Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44:361–371

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yehiam Salts, ARO, Israel, for assistance in primers design, and Prof. Yuval Eshed, Weizmann Institute of Science, Rehovot, Israel, for the pRNA69 and pART27 plasmids. The technical assistance of Sabine Freitag, (Georg-August-University, Göttingen, Germany), Chen Klap, and Sara Shabtai (ARO, Israel) is greatly appreciated.

Funding

This work was supported by the United States-Israel Binational Agricultural Research and Development BARD fund (Grant No. TB-8050-08), and by the Chief Scientist Fund, Ministry of Agriculture, Israel (Grant No. 204-442-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rivka Barg or Gozal Ben-Hayyim.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest in this research.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Demeshko, Y., Dumbur, R. et al. Elevated α-Linolenic Acid Content in Extra-plastidial Membranes of Tomato Accelerates Wound-Induced Jasmonate Generation and Improves Tolerance to the Herbivorous Insects Heliothis peltigera and Spodoptera littoralis. J Plant Growth Regul 38, 723–738 (2019). https://doi.org/10.1007/s00344-018-9885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9885-9

Keywords

Navigation