Mycorrhiza: Plant Growth-Promoting and Biocontrol Agent Ability Under the Abiotic Stress Conditions

  • Chapter
  • First Online:
Soil Microbiomes for Sustainable Agriculture

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 27))

  • 1671 Accesses

Abstract

Agriculture is the fundamental element among humans which leads to crop productivity and stability of the environment. Cutting edge techniques open doors to new dimensions of the research into soil microbiomes to find new ways to explore worthy resources. Microbiome explicitly has an uplifting role in host interaction. Mycorrhizal associations in particular have a remarkable innovation toward agricultural sustainability. Among them, arbuscular mycorrhizal fungi are surged above all other associations of host–microbiome interaction. Although it primarily depends upon gene manipulation and its expression of both host and associated microbe, AMF has an imperative role in controlling the pathogenic stress and plant growth advancement, viz., synthesis of essential secondary metabolites along with vital antioxidants that have a splendid impact on promoting plant growth and making a nutrient-rich rhizosphere. AMF symbiosis ameliorates myriad biotic and abiotic stresses ranging from salinity, drought (which leads to ROS stress), nutrient scarcity and heavy metal toxification which are highly lethal to plant’s health and productivity. However, there is a need to unravel the function of arbuscular mycorrhizal fungi and peculiarities to overcome combine stresses. An eco-friendly approach is the need of time, such as the use of arbuscular mycorrhizal fungi, for better yield and production. However, future studies are being focused on arbuscular mycorrhizal fungi-mediated preferment of crop quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 207.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 207.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel Latef AAH, Miransari M (2014) the role of arbuscular mycorrhizal fungi in alleviation of salt stress. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses: volume 2: alleviation of soil stress by PGPR and mycorrhizal fungi. Springer, New York, NY, pp 23–38. https://doi.org/10.1007/978-1-4939-0721-2_2

  • Abdelhameed RE, Metwally RA (2019) Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. J 21:663–671

    Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Asghar M (2011) Inducing salt tolerance in mung bean through co inoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 57:578–589

    Article  CAS  PubMed  Google Scholar 

  • Alqarawi AA, Hashem A, Abd_Allah EF, Alshahrani TS, Huqail AA (2014) Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biol Hung 65:61–71

    Google Scholar 

  • Azcón-Aguilar Concepción, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Barea JM (2010) Mycorrhizas and agricultural fertility. In: Gonzalez-Fontes A, Garate A, Bonilla I (eds) Agricultural sciences: topics in modern agriculture. Studium, Houston, TX, pp 257–274

    Google Scholar 

  • Barea JM, Pozo MJ, Lopez-Raez JA, Aroca R, Ruız-Lozano JM, Ferrol N et al (2014) Arbuscular mycorrhizas and their significance in promoting soil-plant system sustainability against environmental stresses. In: Rodelas MB, Gonzalez-Lopez J (eds) Beneficial plant-microbial interactions ecology and applications. CRC, Taylor & Francis, Boca Raton, FL, pp 353–387

    Google Scholar 

  • Barrow CJ (2012) Biochar: potential for countering land degradation and for improving agriculture. Appl Geograph 34:21–28

    Article  Google Scholar 

  • Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515

    Article  CAS  PubMed  Google Scholar 

  • Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141

    Article  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant—fungal symbioses. Trends Plant Sci 19:734–740

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Grosch R, Scherwinski K, Pujol M, Badosa E, Manceau C et al (2007) Risk assessment for microbial antagonists: are there effects on. Gesunde Pflanz 59:107–117

    Article  CAS  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in mown grassland. J Ecol 71–82

    Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate. Annu Rev Plant Physiol 24:225–252

    Article  CAS  Google Scholar 

  • Bødker L, Kjøller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12

    Article  PubMed  CAS  Google Scholar 

  • Bona E, Cantamessa S, Massa N, Manassero P, Marsano F, Copetta A et al (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11

    Article  CAS  PubMed  Google Scholar 

  • Bonfante-Fasolo P, Gianinazzi-Pearson V (1982) Ultrastructural aspects of endomycorrhiza in the ericaceae. New Phytologist 91:691–704

    Google Scholar 

  • Brachmann A, Parniske M (2006) The most widespread symbiosis on earth. PLoS Biol 4

    Google Scholar 

  • Braga MR, Claudia M, Young M, Dietrich SMC, Gottlieb OR (1991) Phytoalexin induction in Rubiaceae. J Chem Ecol 17:1079–1090

    Article  CAS  PubMed  Google Scholar 

  • Cabral C, Ravnskov S, Tringovska I, Wollenweber B (2016) Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 408:385–399

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins MJ, Declerck S, Dodd IC et al (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57

    Article  CAS  Google Scholar 

  • Caron M, Fortin JA, Richard C (1985) Influence of substrate on the interaction of Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici on tomatoes. Plant Soil 87:233–239

    Article  Google Scholar 

  • Caron M, Fortin JA, Richard C (1986) Effect of phosphorus concentration and Glomus intraradices. Phytopathology 76:942–946

    Article  CAS  Google Scholar 

  • Castellanos‐Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cárdenas‐Navarro R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782

    Google Scholar 

  • Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T (2019) Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci 10:457

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • De Battista JP, Bacon CW, Severson R, Plattner RD, Bouton JH (1990) Indole acetic acid production by the fungal endophyte of tall fescue. Agronom J 82:878–880

    Article  Google Scholar 

  • Dehne HW, Schönbeck F (1979) Untersuchungen zum einfluss der endotrophen Mycorrhiza auf Pflanzenkrankheiten: II. Phenolstoffwechsel und lignifizierung. J Phytopathol 95:210–216

    Article  CAS  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 5:21–47

    Article  Google Scholar 

  • Dikilitas M, Karakas S, Simsek E, Yadav AN (2021) Microbes from cold deserts and their applications in mitigation of cold stress in plants. In: Yadav AN, Rastegari AA, Yadav N (eds) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, pp 126–152. https://doi.org/10.1201/9780429328633-7

  • Diouf D, Diop TA, Ndoye I (2003) Actinorhizal, mycorhizal and rhizobial symbioses: how much do we know? Afric J Biotechnol 2:1–7

    Article  CAS  Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003) Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 256:303–313

    Article  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22:203–217

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Netherlands, Dordrecht, pp 153–188. https://doi.org/10.1007/978-90-481-2666-8_12

  • Feldmann F, Boyle C (1998) Concurrent development of arbuscular mycorrhizal colonization and powdery mildew infection on three Begonia hiemalis cultivars/Gleichzeitige Entwicklung von arbuskulärer mykorrhiza und echtem Mehltau auf drei Begonia hiemalis Sorten. Zeitschrift Für Pflanzenkrankheiten Und Pflanzenschutz/J Plant Diseas Protect 121–129

    Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. The New Phytol 141:525–533

    Article  Google Scholar 

  • Frank B (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze

    Google Scholar 

  • Gadkar V, David-Schwartz R, Kunik T, Kapulnik Y (2001) Arbuscular mycorrhizal fungal colonization. Factors involved in host recognition. Plant Physiol 127:1493–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Singh S (2018) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Mill sp. (pigeonpea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37:46–63

    Article  CAS  Google Scholar 

  • Garibaldi LA, Gemmill-Herren B, D’Annolfo R, Graeub BE, Cunningham SA, Breeze TD (2017) Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol Evol 32:68–80

    Article  PubMed  Google Scholar 

  • Gaude N, Bortfeld S, Duensing N, Lohse M, Kra**ski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69:510–528

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V (2011) Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, Heidelberg, pp 333–364. https://doi.org/10.1007/978-3-642-13612-2_15

  • Graham TL, Graham MY (1991) Cellular coordination of molecular responses in plant defense. Mol Plant Microbe Interact 4:415–422

    Article  CAS  Google Scholar 

  • Grosch R, Lottmann J, Faltin F, Berg G (2005) Use of bacterial antagonists to control diseases caused by Rhizoctonia solani. Gesunde Pflanz 57:199–205

    Article  Google Scholar 

  • Hage-Ahmed K, Moyses A, Voglgruber A, Hadacek F, Steinkellner S (2013) Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseae and the Soilborne Pathogen Fusarium oxysporum f. sp. lycopersici. J Phytopathol 161:763–773

    Article  CAS  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331:313–327

    Article  CAS  Google Scholar 

  • Hajiboland R, Dashtebani F, Aliasgharzad N (2015) Physiological responses of halophytic C 4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica 53:572–584

    Article  CAS  Google Scholar 

  • Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244

    Article  CAS  PubMed  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    Article  CAS  PubMed  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10:230–242

    Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani ABF, Aldehaish HA, Egamberdieva D (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Sheng M, Tang M (2017) Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Front Plant Science 8:183

    Google Scholar 

  • Heino P, Palva ET (2004) Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin, Heidelberg, pp 151–186. https://doi.org/10.1007/978-3-540-39402-0_7

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

  • Hijri M (2016) Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield. Mycorrhiza 26:209–214

    Article  PubMed  Google Scholar 

  • Hirt H, Shinozaki K (2003) Plant responses to abiotic stress, vol. 4. Springer Science & Business Media

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Basel, Basel, pp 191–200. https://doi.org/10.1007/978-3-0348-8504-1_15

  • Kapoor R, Evelin H, Devi TS, Gupta S (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144

    Article  CAS  PubMed  Google Scholar 

  • Kobra N, Jalil K, Youbert G (2009) Effects of three Glomus species as biocontrol agents against Verticillium-induced wilt in cotton. J Plant Protect Res 49:185–189

    Article  Google Scholar 

  • Koegel S, Lahmidi NA, Arnould C, Chatagnier O, Walder F, Ineichen K et al (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865

    Article  CAS  PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23: https://doi.org/10.1016/j.bcab.2019.101487

    Article  Google Scholar 

  • Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Material 170:51–57

    Article  CAS  Google Scholar 

  • Lambais MR, Mehdy MC (1995) Differential expression of defense-related genes in arbuscular mycorrhiza. Can J Bot 73:533–540

    Article  Google Scholar 

  • Lerat S, Lapointe L, Piché Y, Vierheilig H (2003) Variable carbon-sink strength of different Glomus mosseae strains colonizing barley roots. Can J Bot 81:886–889

    Article  Google Scholar 

  • Lewis DH (1985) Symbiosis and mutualism: crisp concepts and soggy semantics

    Google Scholar 

  • Lin J, Wang Y, Sun S, Mu C, Yan X (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234–241

    Article  CAS  PubMed  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    Article  CAS  Google Scholar 

  • Lu FC, Lee CY, Wang, CL (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. PeerJ, 3:e1266

    Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Malinowski D (1995) Rhizomatous ecotypes and symbiosis with endophytes as new possibilities of improvement in competitive ability of meadow fescue (Festuca pratensis Huds.). ETH Zurich

    Google Scholar 

  • Mathur S, Sharma MP, Jajoo A (2018) Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B 180:149–154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Mohanta TK, Bae H (2015) Functional genomics and signaling events in mycorrhizal symbiosis. J Plant Interact 10:21–40

    Article  CAS  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Morse LJ, Day TA, Faeth SH (2002) Effect of Neotyphodium endophyte infection on growth and leaf gas exchange of Arizona fescue under contrasting water availability regimes. Environ Exp Bot 48:257–268

    Article  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448

    Article  PubMed  Google Scholar 

  • Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76–85

    Article  CAS  PubMed  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot J (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant 129:185–195

    Article  CAS  Google Scholar 

  • Newsham KK, Fitter, AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 991–1000

    Google Scholar 

  • Nozaki H (2005) A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the “Plantae”, emended. J Plant Res 118:247–255

    Article  PubMed  Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218

    Article  Google Scholar 

  • Paszkowski U, Gutjahr C (2013) multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci 4:204

    PubMed  PubMed Central  Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    Article  CAS  PubMed  Google Scholar 

  • Polle A, Schützendübel A (2004) Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Plant responses to abiotic stress. Springer, Berlin, Heidelberg, pp 187–215. https://doi.org/10.1007/978-3-540-39402-0_8

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83

    Article  CAS  PubMed  Google Scholar 

  • Powell CL (1984) Field inoculation with VA mycorrhizal fungi. VA Mycorrhiza 205–222

    Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Ann Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • Puppi G, Azcón R, Höflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser Basel, Basel, pp 201–215. https://doi.org/10.1007/978-3-0348-8504-1_16

  • Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress

    Google Scholar 

  • Read DJ (1999) Mycorrhiza—the state of the art. In: Varma A, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin, Heidelberg, pp 3–34. https://doi.org/10.1007/978-3-662-03779-9_1

  • Rodriguez RJ et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2005) The fungal community: its organization and role in the ecosystem

    Google Scholar 

  • Rouhier N, Jacquot JP (2008) Getting sick may help plants overcome abiotic stress. New Phytol 180:738–741

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, San Koh C, Gelhaye E, Corbier C, Favier F, Didierjean C, Jacquot, JP (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochimica et Biophysica Acta (BBA)-Gen Sub 1780:1249–1260

    Google Scholar 

  • Sanchez DH, Siahpoosh MR, Roessner U, Udvardi M, Kopka J (2008) Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiol Plant 132:209–219

    CAS  PubMed  Google Scholar 

  • Sapp J (2004) The dynamics of symbiosis: an historical overview. Can J Bot 82:1046–1056

    Article  Google Scholar 

  • Schaarschmidt S, Gresshoff PM, Hause B (2013) Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. Genome Biol 14:R62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Selosse MA, Strullu-Derrien C, Martin FM, Kamoun S, Kenrick P (2015) Plants, fungi and oomycetes: a 400-million year affair that shapes the biosphere. Wiley Online Library

    Google Scholar 

  • Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol 11:199–202

    Article  Google Scholar 

  • Sharma VP, Singh S, Dhanjal DS, Singh J, Yadav AN (2021) Potential strategies for control of agricultural occupational health hazards. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 387–402. https://doi.org/10.1007/978-981-15-6949-4_16

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219

    Article  CAS  PubMed  Google Scholar 

  • Spence C, Bais H (2015) Role of plant growth regulators as chemical signals in plant–microbe interactions: a double edged sword. Curr Opin Plant Biol 27:52–58

    Article  CAS  PubMed  Google Scholar 

  • Stevenson JR, Villoria N, Byerlee D, Kelley T, Maredia M (2013) Green revolution research saved an estimated 18 to 27 million hectares from being brought into agricultural production. Proc Nat Acad Sci 110:8363–8368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syamsiyah J, Herawati A (2018) The potential of arbuscular mycorrhizal fungi application on aggregrate stability in alfisol soil. IOP Conf Ser Earth Environ Sci 142:12045

    Article  Google Scholar 

  • Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.org/10.1016/B978-0-12-820526-6.00016-6

  • Tiwari P, Bajpai M, Singh LK, Yadav AN, Bae H (2021) Portraying fungal mechanisms in stress tolerance: perspective for sustainable agriculture. In: Yadav AN (ed) Recent trends in mycological research: volume 1: agricultural and medical perspective. Springer International Publishing, Cham, pp 269–291. https://doi.org/10.1007/978-3-030-60659-6_12

  • Torres-Barragán A, Zavaleta-Mejía E, González-Chávez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 6:253–257

    Article  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Van Der Heijden MGA, Bakke R, Verwaal J, Scheublin TR, Rutten M, Van Logtestijn R et al (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  PubMed  CAS  Google Scholar 

  • Van Der Heijden MGA, Martin FM, Selosse M, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Vos C (2012) Arbusculaire mycorrhizenschimmels in de biocontrole van plantenparasitaire nematoden. University of Leuven (KU Leuven), Leuven

    Google Scholar 

  • Vos CM, Yang Y, De Coninck B, Cammue BPA (2014) Fungal (-like) biocontrol organisms in tomato disease control. Biol Control 74:65–81

    Article  Google Scholar 

  • Wang H, Kraus J, Dettendorfer J, Chua NH, Nehls R (2003) Plant biotechnology 2002 and beyond. Marker gene elimination from transgenic sugar beet by a chemically regulated cre-lox system. Kluwer Academic Publishers, Dordrecht, pp 229–231

    Google Scholar 

  • Wu Z, McGrouther K, Huang J, Wu P, Wu W, Wang H (2014) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290

    Article  CAS  Google Scholar 

  • Wyss P, Boller T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots. Experientia 47:395–399

    Article  CAS  Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020) Plant microbiomes for sustainable agriculture. Springer, Cham

    Book  Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2021) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Book  Google Scholar 

  • Yang H, Zhang Q, Dai Y, Liu Q, Tang J, Bian X, Chen X (2015) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361–374

    Article  CAS  Google Scholar 

  • Yuan Z, Zhang C, Lin F (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    Article  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zeng L, Li J, Liu J, Wang M (2014) Effects of arbuscular mycorrhizal (AM) fungi on citrus fruit quality under nature conditions. Southwest China J Agric Sci 27:2101–2105

    Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49

    Article  Google Scholar 

  • Zhao ZW, **a YM, Qin XZ, Li XW, Cheng LZ, Sha T et al (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of **shuangbanna, southwest China. Mycorrhiza 11:159–162

    Article  PubMed  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Złoch M, Thiem D, Gadzała-Kopciuch R, Hrynkiewicz K (2016) Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere 156:312–325

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hussain, T., Usmaan, M., Numan, M., Khan, A.A., Abbas, F., Gul, A. (2021). Mycorrhiza: Plant Growth-Promoting and Biocontrol Agent Ability Under the Abiotic Stress Conditions. In: Yadav, A.N. (eds) Soil Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-73507-4_16

Download citation

Publish with us

Policies and ethics

Navigation