Towards the Development of Triboelectricity-Based Virus Killer Face Mask for COVID-19: Role of Different Inputs

  • Chapter
  • First Online:
Healthcare Informatics for Fighting COVID-19 and Future Epidemics

Abstract

Since the early detection of COVID-19 infection in December 2019, the number of infected persons has been increasing day by day. In this present scenario, people worldwide are reorganizing their life taking safety precautions like doing frequent sanitization, wearing face masks, and avoiding social gathering to protect themselves from getting infected as the proven vaccine or lifesaving drugs are yet to be discovered. However, deficiency of face mask and their reusability have become a key issue because the used masks need to be discarded after some time.

In this background, we propose the design of a self-powered (no external power source) face mask which does not require to be sterilized. The proposed mask is comprised of two differently charged tribo-series materials with outer electrocution layer. Different combinations of tribo-series (+ and −) materials have been chosen based on their triboelectric properties to generate static electricity. Nanofibers have been considered for their ability to generate a sufficient amount of triboelectricity. Multilayer of electrospun nanofiber-based tribo-materials such as polyvinylidene fluoride (PVDF)-nylon and PVDF-poly(ethyl methacrylate) has been used due to the effective air filtration property of nanofibers and generating tribo electricity. In addition, the generated charge via utilization of contact electrification and electrostatic induction is amplified using a suitable energy harvesting circuit. The design of an outer electrocution layer has been made kee** a few nm distances in between the tribo-layers and the electrocution layer to avoid short-circuiting. Metallic nonwoven fabric has been taken in practice to design the outer electrocution layer. In this practice, the harvesting of triboelectric energy has been done using a suitable charging circuit which can generate sufficient voltage (few volts) to trigger the outer electrocution layer. During the wearer’s inhalation and exhalation, the inner tribo-layers produce triboelectric charges due to mechanical agitation between the layers. Additionally, acoustic or air vibration during talking and different facial expressions of the volunteer will also take part in the generation of effective triboelectric power. The viruses get electrocuted once the droplets containing viruses come in contact to the mask’s outer layer. In addition, the fitting comfort and the breathing permeability of the proposed mask are also ensured. In this chapter, we shall explain the face mask’s design and present the analysis results of different physiological inputs for the efficacy of the mask for killing the deadly virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.L. Wang, J.H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006). https://doi.org/10.1126/science.1124005

    Article  Google Scholar 

  2. C. Wan, C.R. Bowen, Multiscale-structuring of polyvinylidene fluoride for energy harvesting: The impact of molecular-, micro- and macro-structure. J. Mater. Chem. A 5, 3091 (2017)

    Article  Google Scholar 

  3. S.K. Ghosh, D. Mandal, Piezoelectricity of 2D materials and its applications toward mechanical energy harvesting, in 2D Nanomaterials for Energy Applications, (Elsevier, Amsterdam, 2020), pp. 1–38

    Google Scholar 

  4. Z.L. Wang, ACS Nano 7(11), 9533–9557 (2013)

    Google Scholar 

  5. F.R. Fan, Z.Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012)

    Article  Google Scholar 

  6. F.R. Fan, L. Lin, G. Zhu, W.Z. Wu, R. Zhang, Z.L. Wang, Nano Lett. 12, 3109–3114 (2012)

    Article  Google Scholar 

  7. G. Zhu, C.F. Pan, W.X. Guo, C.Y. Chen, Y.S. Zhou, R.M. Yu, Z.L. Wang, Nano Lett. 12, 4960–4965 (2012)

    Article  Google Scholar 

  8. S.H. Wang, L. Lin, Z.L. Wang, Nano Lett. 12, 6339–6346 (2012)

    Article  Google Scholar 

  9. G. Zhu, J. Chen, Y. Liu, P. Bai, Y.S. Zhou, Q.S. **g, C.F. Pan, Z.L. Wang, Nano Lett. 13, 2282–2289 (2013)

    Article  Google Scholar 

  10. L. Lin, S.H. Wang, Y.N. **e, Q.S. **g, S.M. Niu, Y.F. Hu, Z.L. Wang, Nano Lett. 13, 2916–2923 (2013)

    Article  Google Scholar 

  11. S.H. Wang, Y.N. **e, S.M. Niu, L. Lin, Z.L. Wang, Adv. Mater. 26, 2818–2824 (2014)

    Article  Google Scholar 

  12. G. Zhu, J. Chen, T.J. Zhang, Q.S. **g, Z.L. Wang, Nat. Commun. 5 (2014)

    Google Scholar 

  13. S.H. Wang, Z.H. Lin, S.M. Niu, L. Lin, Y.N. **e, K.C. Pradel, Z.L. Wang, ACS Nano 7, 11263–11271 (2013)

    Article  Google Scholar 

  14. B. Meng, W. Tang, Z.H. Too, X.S. Zhang, M.D. Han, W. Liu, H.X. Zhang, Energy Environ. Sci. 6, 3235–3240 (2013)

    Article  Google Scholar 

  15. Y. Yang, Y.S. Zhou, H.L. Zhang, Y. Liu, S.M. Lee, Z.L. Wang, Adv. Mater. 25, 6594–6601 (2013)

    Article  Google Scholar 

  16. S.H. Wang, Y.N. **e, S.M. Niu, L. Lin, C. Liu, Y.S. Zhou, Z.L. Wang, Adv. Mater. (2014). https://doi.org/10.1002/adma.201402491

  17. G. Zhu, W.Q. Yang, T.J. Zhang, Q.S. **g, J. Chen, Y.S. Zhou, P. Bai, Z.L. Wang, Nano Lett. 14, 3208–3213 (2014)

    Article  Google Scholar 

  18. Y. Yang, H.L. Zhang, Z.H. Lin, Y.S. Zhou, Q.S. **g, Y.J. Su, J. Yang, J. Chen, C.G. Hu, Z.L. Wang, ACS Nano 7, 9213–9222 (2013)

    Article  Google Scholar 

  19. L. Lin, Y.N. **e, S.H. Wang, W.Z. Wu, S.M. Niu, X.N. Wen, Z.L. Wang, ACS Nano 7, 8266–8274 (2013)

    Article  Google Scholar 

  20. G. Zhu, Z.-H. Lin, Q.S. **g, P. Bai, C.F. Pan, Y. Yang, Y.S. Zhou, Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013)

    Article  Google Scholar 

  21. S.H. Wang, L. Lin, Y.N. **e, Q.S. **g, S.M. Niu, Z.L. Wang, Nano Lett. 13, 2226–2233 (2013)

    Article  Google Scholar 

  22. G. Zhu, Y.S. Zhou, P. Bai, X.S. Meng, Q.S. **g, J. Chen, Z.L. Wang, Adv. Mater. 26, 3788–3796 (2014)

    Article  Google Scholar 

  23. L. Lin, S.H. Wang, S.M. Niu, C. Liu, Y.N. **e, Z.L. Wang, ACS Appl. Mater. Inter. 6, 3038–3045 (2014)

    Google Scholar 

  24. J. Chen, G. Zhu, W.Q. Yang, Q.S. **g, P. Bai, Y. Yang, T.C. Hou, Z.L. Wang, Adv. Mater. 25, 6094–6099 (2013)

    Article  Google Scholar 

  25. J. Yang, J. Chen, Y. Liu, W.Q. Yang, Y.J. Su, Z.L. Wang, ACS Nano 8, 2649–2657 (2014)

    Article  Google Scholar 

  26. J. Henniker, Triboelectricity in polymers. Nature 196, 474 (1962)

    Article  Google Scholar 

  27. D.K. Davies, Charge generation on dielectric surfaces. J. Phys. D. Appl. Phys. 2, 1533–1537 (1969)

    Article  Google Scholar 

  28. http://owlsmag.wordpress.com/2010/01/20/a-naturalhistory-devin-corbin/

  29. Disputatio Physica Experimentalis, De Electricitatibus Contrariis. Typis Ioannis Iacobi Adleri (1757)

    Google Scholar 

  30. Z.L. Wang, On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 20, 74–82 (2017)

    Article  Google Scholar 

  31. R.D.I.G. Dharmasena, K.D.G.I. Jayawardena, C.A. Mills, J.H.B. Deane, J.V. Anguita, R.A. Dorey, S.R.P. Silva, Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 10, 1801–1811 (2017)

    Article  Google Scholar 

  32. G.S.P. Castle, J. Electrost. 40-1, 13–20 (1997)

    Article  Google Scholar 

  33. A.F. Diaz, R.M. Felix-Navarro, J. Electrost. 62, 277–290 (2004)

    Article  Google Scholar 

  34. L.S. McCarty, G.M. Whitesides, Angew. Chem. Int. Edit. 47, 2188–2207 (2008)

    Article  Google Scholar 

  35. H.T. Baytekin, A.Z. Patashinski, M. Branicki, B. Baytekin, S. Soh, B.A. Grzybowski, Science 333, 308–312 (2011)

    Article  Google Scholar 

  36. J.A. Wiles, B.A. Grzybowski, A. Winkleman, G.M. Whitesides, Anal. Chem. 75, 4859–4867 (2003)

    Article  Google Scholar 

  37. M.-L. Seol, J.-H. Woo, S.-B. Jeon, D. Kim, S.-J. Park, J. Hur, Y.K. Choi, Nano Energy 14, 201 (2015)

    Article  Google Scholar 

  38. G. Cheng, Z.H. Lin, L. Lin, Z.L. Du, Z.L. Wang, ACS Nano 7, 7383 (2013)

    Article  Google Scholar 

  39. Z.H. Lin, Y. **e, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, ACS Nano 7, 4554 (2013)

    Article  Google Scholar 

  40. Z.H. Lin, G. Cheng, Y. Yang, Y.S. Zhou, S. Lee, Z.L. Wang, Adv. Funct. Mater. 24, 2810 (2014)

    Article  Google Scholar 

  41. W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. **g, X. Cao, Z.L. Wang, ACS Nano 7, 11317 (2013)

    Article  Google Scholar 

  42. C.K. Jeong, K.M. Baek, S. Niu, T.W. Nam, Y.H. Hur, D.Y. Park, G. Hwang, M. Byun, Z.L. Wang, Y.S. Jung, K.J. Lee, Nano Lett. 14, 7091 (2014)

    Google Scholar 

  43. D. Kim, S. Jeon, J.Y. Kim, M. Seol, S.O. Kim, Y. Choi, Nano Energy 12, 331 (2015)

    Article  Google Scholar 

  44. K.Y. Lee, J. Chun, J.H. Lee, K.N. Kim, N.R. Kang, J.Y. Kim, M.H. Kim, K.S. Shin, M.K. Gupta, J.M. Baik, S.W. Kim, Adv. Mater. 26, 5037 (2014)

    Article  Google Scholar 

  45. M.-L. Seol, J.-H. Woo, D.-I. Lee, H. Im, J. Hur, Y.-K. Choi, Small 10, 3887 (2014)

    Article  Google Scholar 

  46. Y.F. Hu, J. Yang, Q.S. **g, S.M. Niu, W.Z. Wu, Z.L. Wang, ACS Nano 7, 10424–10432 (2013)

    Article  Google Scholar 

  47. J. Yang, J. Chen, Y. Yang, H.L. Zhang, W.Q. Yang, P. Bai, Y.J. Su, Z.L. Wang, Adv. Energy Mater. 4 (2014)

    Google Scholar 

  48. X.N. Wen, W.Q. Yang, Q.S. **g, Z.L. Wang, ACS Nano 8, 7405–7412 (2014)

    Article  Google Scholar 

  49. P. Bai, G. Zhu, Y. Liu, J. Chen, Q.S. **g, W.Q. Yang, J.S. Ma, G. Zhang, Z.L. Wang, ACS Nano 7, 6361–6366 (2013)

    Article  Google Scholar 

  50. Y. Yang, H.L. Zhang, J. Chen, Q.S. **g, Y.S. Zhou, X.N. Wen, Z.L. Wang, ACS Nano 7, 7342–7351 (2013)

    Article  Google Scholar 

  51. S.M. Niu, Y. Liu, S.H. Wang, L. Lin, Y.S. Zhou, Y.F. Hu, Z.L. Wang, Adv. Funct. Mater. 25(43), 6184–6193 (2013)

    Article  Google Scholar 

  52. H.L. Zhang, Y. Yang, X.D. Zhong, Y.J. Su, Y.S. Zhou, C.G. Hu, Z.L. Wang, ACS Nano 8, 680–689 (2014)

    Article  Google Scholar 

  53. Z. Lin, J. Yang, X. Li, Y. Wu, W. Wei, J. Liu, J. Chen, J. Yang, Adv. Funct. Mater. 28, 1704112 (2018)

    Article  Google Scholar 

  54. F. Yi, L. Lin, S. Niu, P.K. Yang, Z. Wang, J. Chen, Y. Zhou, Y. Zi, J. Wang, Q. Liao, Y. Zhang, Z.L. Wang, Adv. Funct. Mater. 25, 3688 (2015)

    Article  Google Scholar 

  55. X. Zhao, Z. Kang, Q. Liao, Z. Zhang, M. Ma, Q. Zhang, Y. Zhang, Nano Energy 48, 312 (2018)

    Article  Google Scholar 

  56. Z. Lin, Z. Wu, B. Zhang, Y.-C. Wang, H. Guo, G. Liu, C. Chen, Y. Chen, J. Yang, Z.L. Wang, Adv. Mater. Technol. 2018, 1800360 (2018)

    Google Scholar 

  57. P. Bai, G. Zhu, Q. **g, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, Z.L. Wang, Adv. Funct. Mater. 24, 5807 (2014)

    Article  Google Scholar 

  58. H. Ouyang, J. Tian, G. Sun, Y. Zou, Z. Liu, H. Li, L. Zhao, B. Shi, Y. Fan, Y. Fan, Z.L. Wang, Z. Li, Adv. Mater. 29, 1703456 (2017)

    Article  Google Scholar 

  59. J. Yang, J. Chen, Y. Su, Q. **g, Z. Li, F. Yi, X. Wen, Z. Wang, Z.L. Wang, Adv. Mater. 27, 1316 (2015)

    Article  Google Scholar 

  60. J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu, Z.L. Wang, J. Zhou, ACS Nano 8, 6273 (2014)

    Article  Google Scholar 

  61. C.-H. Chen, P.-W. Lee, Y.-H. Tsao, Z.-H. Lin, Nano Energy 42, 241 (2017)

    Article  Google Scholar 

  62. Y.N. **e, S.H. Wang, S.M. Niu, L. Lin, Q.S. **g, J. Yang, Z.Y. Wu, Z.L. Wang, Adv. Mater. (2014)

    Google Scholar 

  63. F.R. Fan, Z.Q. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1(2), 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  Google Scholar 

  64. Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7(11), 9533–9557 (2013). https://doi.org/10.1021/nn404614z

    Article  Google Scholar 

  65. Y. Yang, K.C. Pradel, Q. **g, J.M. Wu, F. Zhang, Y. Zhou, Y. Zhang, Z.L. Wang, Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano 6(8), 6984–6989 (2012). https://doi.org/10.1021/nn302481p

    Article  Google Scholar 

  66. Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z.L. Wang, Pyroelectric nano-generators for harvesting thermoelectric energy. Nano Lett. 12(6), 2833–2838 (2012). https://doi.org/10.1021/nl3003039

    Article  Google Scholar 

  67. Y. Zhoua, S.X. Zhanga, G.P. Lia, Piezoelectric nuclear battery driven by the jet-flow, Proceedings of the 2017 25th International Conference on Nuclear Engineering, ICONE25, July 2–6 2017, Shanghai, China, https://doi.org/10.1115/ICONE25-66981

  68. A.A. Mustapha, N.M. Ali, K.S. Leong, Experimental comparison of piezoelectric rectifying circuits for energy harvesting. IEEE Student Conf. Res. Dev. (2013). https://doi.org/10.1109/SCOReD.2013.7002653

  69. M.J. Guan, W.H. Liao, On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages. Smart Mater. Struct. 16, 498–505 (2007). https://doi.org/10.1088/0964-1726/16/2/031

    Article  Google Scholar 

  70. G.K. Ottman, H.F. Hofmann, G.A. Lesieutre, Optimized piezoelectric energy circuit using step-down converter in discontinuous conduction mode. IEEE Trans. Power Electron. 18, 696–703 (2003)

    Article  Google Scholar 

  71. L.G. Tran, H.K. Cha, W.T. Park, RF power harvesting: A review on designing methodologies and applications. Micro Nano Syst. Lett. (2017). https://doi.org/10.1186/s40486-017-0051-0

  72. S. Gollakota, M.S. Reynolds, J.R. Smith, D.J. Wetherall, The emergence of RF-powered computing. IEEE Comput. Soc., 32–39 (2014). https://doi.org/10.1109/MC.2013.404

  73. K.Y. Lee, J. Chun, J.H. Lee, Hydrophobic sponge structure-based triboelectric nano-generator. Adv. Mater. 26(29), 5037–5042 (2014)

    Article  Google Scholar 

  74. G. Zhu, C. Pan, W. Guo, Triboelectric-generator-driven pulse electrode position for micropatterning. Nano Lett. 12(9), 4960–4965 (2012)

    Article  Google Scholar 

  75. G. Zhu, Z.-H. Lin, Q. **g, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nano-generator. Nano Lett. 13(2), 847–853 (2013)

    Article  Google Scholar 

  76. J. Yang, J. Chen, Y. Yang, Broadband vibration energy harvesting based on a triboelectric nano-generator. Adv. Energy Mater. 4(6), 1301322 (2014)

    Article  Google Scholar 

  77. S. Kim, M.K. Gupta, K.Y. Lee, Transparent flexible graphene triboelectric nano-generators. Adv. Mater. 26(23), 3918–3925 (2014)

    Article  Google Scholar 

  78. S. Niu, Z.L. Wang, Theoretical systems of triboelectric nano-generators. Nano Energy (2014). https://doi.org/10.1016/j.nanoen.2014.11.034

  79. J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang, T. Zhang, Z.L. Wang, Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. https://doi.org/10.1038/s41467-017-00131-4

  80. S. Xu, W. Ding, H. Guo, X. Wang, Z.L. Wang, Boost the performance of triboelectric nanogenerators through circuit oscillation. Adv. Energy Mater. 2019, 1900772 (2019)

    Article  Google Scholar 

  81. S. Niu, Y. Liu, Y.S. Zhou, S. Wang, L. Lin, Z.L. Wang, Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage. IEEE Trans. Electron Devices 62(2), 641–647 (2015)

    Article  Google Scholar 

  82. Renewables in Global Energy Supply: An IEA facts sheet (2007)

    Google Scholar 

  83. Z. Lin, J. Chen, J. Yang, Recent progress in triboelectric nanogenerators as a renewable and sustainable power source. J. Nanomater. 2016, 5651613 (2016)

    Google Scholar 

  84. X. Fan, J. Chen, J. Yang, P. Bai, Z. Li, Z.L. Wang, Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS Nano 9(4), 4236–4243 (2015)

    Article  Google Scholar 

  85. X. Pu, M. Liu, X. Chen, J. Sun, C. Du, Y. Zhang, J. Zhai, W. Hu, Z.L. Wang, Ultra stretchable, transparent triboelectric nano-generator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 3(5) (2017)

    Google Scholar 

  86. S. Wang, X. Mu, X. Wang, A.Y. Gu, Z.L. Wang, Y. Yang, Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 9(10), 9554–9563 (2015)

    Article  Google Scholar 

  87. L. Lin, S. Wang, S. Niu, C. Liu, Y. **e, Z.L. Wang, Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Inter. 6(4), 3031–3038 (2014)

    Article  Google Scholar 

  88. Y. Yang, H. Zhang, X. Zhong, F. Yi, R. Yu, Y. Zhang, Z.L. Wang, Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging. ACS Appl. Mater. Inter. 6(5), 3680–3688 (2014)

    Article  Google Scholar 

  89. L. Hongbin Lina, H. Minghui, J. Qingshen, Y. Weifeng, W. Shutang, L. Ying, Z. Yaoli, L. **g, L. Ning, M. Yanwen, W. Lianhui, X. Yannan, Angle-shaped triboelectric nano-generator for harvesting environmental wind energy. Nano Energy 56, 269–276 (2019)

    Article  Google Scholar 

  90. A. Pandey, P. Badoniya, J. George, Rotary triboelectric nanogenerators as a wind energy harvester. Int. J. Recent Technol. Eng. 8, 2277–3878 (2019)

    Google Scholar 

  91. H. Zou, Y. Zhang, L. Guo, P. Wang, X. He, G. Dai, H. Zheng, C. Chen, A.C. Wang, C. Xu, Z.L. Wang, Quantifying the triboelectric series. Nat. Commun.. https://doi.org/10.1038/s41467-019-09461-x

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S. et al. (2022). Towards the Development of Triboelectricity-Based Virus Killer Face Mask for COVID-19: Role of Different Inputs. In: Garg, L., Chakraborty, C., Mahmoudi, S., Sohmen, V.S. (eds) Healthcare Informatics for Fighting COVID-19 and Future Epidemics. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-72752-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72752-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72751-2

  • Online ISBN: 978-3-030-72752-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation