Steam Reforming of Methanol, Ethanol and Glycerol over Catalysts with Mesoporous Supports: A Comparative Study

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Hydrogen generation via steam reforming of alcohols (SRA) has gained tremendous attention among green energy industries, research scientists and government policy makers. A variety of mesoporous heterogeneous catalysts used to produce hydrogen from alcohols like methanol (SRM), ethanol (SRE) and glycerol (SRG) are discussed. Siliceous mesoporous supports, e.g. SBA-15, MCM-41, MCM-48 and KIT-6, have proven to be substantially thermally stable compared to metal oxide supports such as TiO2, Al2O3 and CeO2. While Cu-based catalysts are commonly used for SRM, Ni- and Co-based catalysts are preferred for SRE and SRG reactions. Addition of promoters like group 1 and 2 metals to these monometallic catalysts significantly improves reducibility of the metal oxides as well as the basicity of the catalysts that minimize deactivation of catalysts by coking. Synergistic effects of bimetallic catalysts such as Cu-Ni, Pd-Ni and Ni-Co to increase hydrogen selectivity and long-term stability of the catalysts are discussed. Hydrogen selectivity and feed conversion of 100% can be attained depending on the reaction conditions like temperature, feed flow rate, type of catalyst, catalyst loading and alcohol/water molar ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  2. Jones SD, Hagelin-Weaver HE (2009) Steam reforming of methanol over CeO2- and ZrO2-promoted cu-ZnO catalysts supported on nanoparticle Al2O3. Appl Catal B 90:195–204

    Article  CAS  Google Scholar 

  3. Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  4. Contreras JL, Salmones J, Colin-Luna JA, Nuno L, Quintana B, Cordova I, Zeifert B, Tapia C, Fuentes GA (2014) Catalysts for H2 production using the ethanol steam reforming (a review). Int J Hydrog Energy 39:18835–18853

    Article  CAS  Google Scholar 

  5. Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energ Rev 16:3024–3033

    Article  CAS  Google Scholar 

  6. Bepari S, Kuila D (2020) Steam reforming of methanol, ethanol, and glycerol over nickel-based catalysts-a review. Int J Hydrog Energy 45:18090–18113

    Google Scholar 

  7. Schwengber CA, Alves HJ, Schaffner RA, Silva FA, Sequinel R, Bach VR, Ferracin RJ (2016) Overview of glycerol reforming for hydrogen production. Renew Sust Energ Rev 58:259–266

    Article  CAS  Google Scholar 

  8. Olah GA, Geoppert A, Surya Prakash GK (1999) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  9. Cecere D, Giacomazzi E, Ingenito A (2014) A review on hydrogen industrial aerospace applications. Int J Hydrog Energy 39:10731–10747

    Article  CAS  Google Scholar 

  10. Ramachandran R, Menon RK (1998) An overview of industrial use of hydrogen. Int J Hydrog Energy 23:593–598

    Article  CAS  Google Scholar 

  11. Kammert J, Moon J, Cheng Y, Daemen L, Irle S, Fung V, Liu J, Page K, Ma X, Phaneuf V, Tong J, Ramirez-Cuesta AJ, Wu Z (2020) Nature of reactive hydrogen for Ammonia synthesis over a Ru/ C12A7 Electride catalyst. J Am Chem Soc 142:7655–7667

    Article  CAS  Google Scholar 

  12. Mohammad N, Bepari S, Aravamudhan S, Kuila D (2019) Kinetics of Fischer–Tropsch synthesis in a 3-D printed stainless steel microreactor using different mesoporous silica supported co-Ru catalysts. Catalysts 9:872

    Article  CAS  Google Scholar 

  13. Mohammad N, Abrokwah RY, Stevens-Boyd RG, Aravamudhan S, Kuila D (2020) Fischer-tropsch studies in a 3d-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-mcm-41 catalysts. Catal Today 358:303–315

    Google Scholar 

  14. Bepari S, Stevens-Boyd RG, Mohammad N, Li X, Abrokwah R, Kuila D Composite mesoporous SiO2-Al2O3 supported Fe, FeCo and FeRu catalysts for Fischer-Tropsch studies in a 3-D printed stainless-steel microreactor. Mater Today DOI: https://doi.org/10.1016/j.matpr.2020.04.582, (2020)

  15. Taboada E, Angurell I, Llorca J (2014) Dynamic photocatalytic hydrogen production from ethanol-water mixtures in an optical fiber honeycomb reactor loaded with au/TiO2. J Catal 309:460–467

    Article  CAS  Google Scholar 

  16. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  CAS  Google Scholar 

  17. Marone A, Izzo G, Mentuccia L, Massini G, Paganin P, Rosa S, Varrone C, Signorini A (2014) Vegetable waste as substrate and source of suitable microflora for bio-hydrogen production. Renew Energy 68:6–13

    Article  CAS  Google Scholar 

  18. Gallucci F, Basile A (2008) Palladium membrane reactor for steam reforming reaction: a comparison between deferent fuels. Int J Hydrog Energy 33:1671–1687

    Article  CAS  Google Scholar 

  19. Sun J, Qiu X, Wu F, Zhu W, Wang W, Hao S (2004) Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. Int J Hydrog Energy 29:1075–1081

    Article  CAS  Google Scholar 

  20. Ribeirinha P, Alves I, Vidal Vazquez F, Schuller G, Boaventura M, Mendes A (2017) Heat integration of methanol steam reformer with a high-temperature polymeric electrolytic membrane cell. Energy 120:468–471

    Article  CAS  Google Scholar 

  21. Ribeirinha P, Abdollahzadeh M, Sousa JM, Boaventura M, Mendes A (2017) Modelling of a high-temperature polymer electrolyte membrane fuel cell integrated with a methanol steam reformer cell. Appl Energy 202:6–19

    Article  CAS  Google Scholar 

  22. Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819

    Article  CAS  Google Scholar 

  23. Basile A, Lulianelli A, Longo T, Liguori S, De FM (2011) Pd-based selective membrane State-of-the Art [Chapter 2]. In: Marrwlli L, De Falco M, Laquaniello G (eds) Handbook of Membrane reactors for hydrogen production processes. Springer, London/Dordrecht/Heidelberg/New York, pp 21–55

    Chapter  Google Scholar 

  24. Goltsov VA, Veziroglu TN, Goltsova LF (2006) Hydrogen civilization of the future–a new conception of the IAHE. Int J Hydrog Energy 31:153–159

    Article  CAS  Google Scholar 

  25. Liu Z, Senanayake SD, Rodriguez JA (2019) Catalysts for the steam reforming of ethanol and other alcohols. In: Ethanol. https://doi.org/10.1016/B978-0-12-811458-2.00005-5

    Chapter  Google Scholar 

  26. Hyber GW, Iborra S, Corma A (2006) Synthesis of transition fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  27. Lytkina AA, Zhilyaeva NA, Ermilova MM, Orekhova NV, Yaroslavtsev AB (2015) Inference of the support structure and composition of Ni-cu-based catalysts on hydrogen production by methanol steam reforming. Int J Hydrog Energy 40:9677–9684

    Article  CAS  Google Scholar 

  28. Sengodan S, Lan R, Humphreys J, Du DW, Xu W, Wang HT, Tao SW (2018) Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renew Sust Energ Rev 82:761–780

    Article  CAS  Google Scholar 

  29. Papavasiliou J, Avgouropoulos G, Ioannides T (2009) Steady-state isotopic transient kinetic analysis of steam reforming of methanol over Cu-based catalysts. Appl Catal B 88:490–496

    Article  CAS  Google Scholar 

  30. Takahashi K, Takezawa N, Kobayashi H (1982) The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl Catal 2:363–366

    Article  CAS  Google Scholar 

  31. Breen JP, Ross JRH (1999) Methanol reforming for fuel-cell applications: development of zirconia-containing Cu–Zn–Al catalysts. Catal Today 51:521–533

    Article  CAS  Google Scholar 

  32. Jiang CJ, Trimm DL, Wainwright MS, Cant NW. Kinetic study of steam reforming of methanol over copper-based catalysts(1993) Appl Catal A Gen 93:245–255

    Article  CAS  Google Scholar 

  33. Abrokwah RY, Deshmane VG, Kuila D (2016) Comparative performance of M-MCM-41 (M: cu, co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J Mol Catal A Chem 425:10–20

    Article  CAS  Google Scholar 

  34. Deshmane VG, Abrokwah RY, Kuila D (2015) Synthesis of stable cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Int J Hydrog Energy 40:10439–10452

    Article  CAS  Google Scholar 

  35. Karim AM, Conant T, Datye AK (2008) Controlling ZnO morphology for improved methanol steam reforming reactivity. Phys Chem Chem Phys 10:5584–5590

    Article  CAS  Google Scholar 

  36. Ranganathan ES, Bej SK, Thompson LT (2005) Methanol steam reforming over Pd/ZnO and Pd/CeO2 catalysts. Appl Catal A Gen 289:153–162

    Article  CAS  Google Scholar 

  37. Conant T, Karim AM, Lebarbier V, Wang Y, Girgsdies F, Schlogl R, Datye A (2008) Stability of bimetallic Pd–Zn catalysts for the steam reforming of methanol. J Catal 257:64–70

    Article  CAS  Google Scholar 

  38. Suwa Y, Ito SI, Kameoka S, Tomishige K, Kunimori K (2004) Comparative study between Zn–Pd/C and Pd/ZnO catalysts for steam reforming of methanol. Appl Catal A Gen 267:9–16

    Article  CAS  Google Scholar 

  39. Liguras DK, Kondarides DI, Verykios XE (2003) Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Appl Catal B 43:345–354

    Article  CAS  Google Scholar 

  40. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19:2098–2106

    Article  CAS  Google Scholar 

  41. Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/ Al2O3 catalysts for fuel-cell application. Int J Hydrog Energy 30:437–445

    Article  CAS  Google Scholar 

  42. Bepari S, Pradhan NC, Dalai AK (2017) Selective production of hydrogen by steam reforming of glycerol over Ni/Fly ash catalyst. Catal Today 291:36–46

    Article  CAS  Google Scholar 

  43. Bepari S, Basu S, Pradhan NC, Dalai AK (2017) Steam reforming of ethanol over cerium-promoted Ni-Mg-Al hydrotalcite catalysts. Catal Today 291:47–57

    Article  CAS  Google Scholar 

  44. Cheng CK, Foo SY, Adesina AA (2011) Steam reforming of glycerol over Ni/Al2O3 catalyst. Catal Today 178:25–33

    Article  CAS  Google Scholar 

  45. Surendar M, Sagar TV, Babu BH, Lingaiah N, Rao KSR, Prasad PSS (2015) Glycerol steam reforming over La-Ce-Co mixed oxide-derived cobalt catalysts. RSC Adv 5:45184–45193

    Article  CAS  Google Scholar 

  46. Pompeo F, Santori GF, Nichio NN (2011) Hydrogen production by glycerol steam reforming with Pt/SiO2 and Ni/SiO2 catalysts. Catal Today 172:183–188

    Article  CAS  Google Scholar 

  47. Chiodo V, Freni S, Galvagno A, Mondello N, Frusteri F (2010) Catalytic features of Rh and Ni supported catalysts in the steam reforming of glycerol to produce hydrogen. Appl Catal A Gen 381:1–7

    Article  CAS  Google Scholar 

  48. A. Ebshish, Z. Yaakob, Y.H. Taufiq-Yap, A. Bshish, A. Shaibani, Catalytic steam reforming of glycerol over cerium and palladium-based catalysts for hydrogen production. J Fuel Cell Sci Technol 10, 021003 (1–6) (2013)

    Google Scholar 

  49. Sundari R, Vaidya PD (2012) Reaction kinetics of glycerol steam reforming using a Ru/Al2O3 catalyst. Energy Fuel 26:4195–4204

    Article  CAS  Google Scholar 

  50. Frusteri F, Freni S, Chiodo V, Spadaro L, Di Blasi O, Bonura G, Cavallaro S (2004) Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl Catal A Gen 270:1–7

    Article  CAS  Google Scholar 

  51. Fatsikostas AN, Verykios XE (2004) Reaction network of steam reforming of ethanol over Ni-based catalysts. J Catal 225:439–452

    Article  CAS  Google Scholar 

  52. Yang Y, Ma J, Wu F (2006) Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. Int J Hydrog Energy 31:877–882

    Article  CAS  Google Scholar 

  53. Pompeo F, Santori G, Nichio NN (2010) Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts. Int J Hydrogen Energy 35:8912–8920

    Article  CAS  Google Scholar 

  54. Khzouz M, Wood J, Pollet B, Bujalski W (2013) Characterization and activity test of commercial Ni/Al2O3, cu/ZnO/Al2O3 and prepared Ni–cu/Al2O3 catalysts for hydrogen production from methane and methanol fuels. Int J Hydrog Energy 38:1664–1675

    Article  CAS  Google Scholar 

  55. D. Zhao, Y. Wan, W. Zhou, Ordered mesoporous materials. (John Wiley & Sons; 2012, New York), pp. 1–22. ISBN 9783527647866, https://doi.org/10.1002/9783527647866

  56. Taguchi A, Schuth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45

    Article  CAS  Google Scholar 

  57. K. Wilson, A. F. Lee, Heterogeneous catalysts for clean technology: spectroscopy, design, and monitoring. (John Wiley & Sons; 2013, New York) pp. 2–7. ISBN 9783527326358, https://doi.org/10.1002/9783527658985

  58. Pakhare D, Spivey J (2014) A review of dry (CO2) reforming of methane over noble metal catalysts. Chem Soc Rev 43:7813–7837

    Article  CAS  Google Scholar 

  59. Iulianelli A, Ribeirinha P, Mendes A, Basile A (2014) Methanol steam reforming for hydrogen generation via conventional and membrane reactors: a review. Renew Sust Energ Rev 29:355–368

    Article  CAS  Google Scholar 

  60. Sa S, Silva H, Brandao L, Sousa JM, Mendes A (2010) Catalysts for methanol steam reforming—a review. Appl Catal B 99:43–57

    Article  CAS  Google Scholar 

  61. Eswaramoorthi I, Dalai AK (2009) A comparative study on the performance of mesoporous SBA-15 supported Pd-Zn catalysts in partial oxidation and steam reforming of methanol for hydrogen production. Int J Hydrog Energy 34:2580–2590

    Article  CAS  Google Scholar 

  62. Jampa S, Jamieson AM, Chaisuwan T, Luengnaruemitchai A, Wongkasemjit S (2017) Achievement of hydrogen production from autothermal steam reforming of methanol over Cu-loaded mesoporous CeO2 and Cu-loaded mesoporous CeO2-ZrO2 catalysts. Int J Hydrog Energy 42:15073–15084

    Article  CAS  Google Scholar 

  63. Taghizadeh M, Akhoundzadeh H, Rezayan A, Sadeghian M (2018) Excellent catalytic performance of 3D-mesoporous KIT-6 supported Cu and Ce nanoparticles in methanol steam reforming. Int J Hydrog Energy 43:10926–10937

    Article  CAS  Google Scholar 

  64. Lenarda M, Moretti E, Storaro L, Patrono P, Pinzari F, Rodriguez-Castellon E, Jimenez-Lopez A, Busca G, Finocchio E, Montanari T, Frattini R (2006) Finely dispersed Pd-Zn catalyst supported on an organized mesoporous alumina for hydrogen production by methanol steam reforming. Appl Catal A Gen 312:220–228

    Article  CAS  Google Scholar 

  65. Deshmane VG, Owen SL, Abrokwah RY, Kuila D (2015) Mesoporous nanocrystalline TiO2 supported metal (cu, co, Ni, Pd, Zn, and Sn) catalysts: effect of metal-support interactions on steam reforming of methanol. J Mol Catal A Chem 408:202–213

    Article  CAS  Google Scholar 

  66. Tajrishi OZ, Taghizadeh M, Kiadehi AD (2018) Methanol steam reforming in a microchannel reactor by Zn-, Ce- and Zr- modified mesoporous cu/SBA-15 nanocatalyst. Int J Hydrog Energy 43:14103–14120

    Article  CAS  Google Scholar 

  67. Zhao D, Sun J, Li Q, Stucky GD (2000) Morphological control of highly ordered mesoporous silica SBA-15. Chem Mater 12:275–279

    Article  CAS  Google Scholar 

  68. Araujo VD, Bellido JDA, Bernardi MIB, Assaf JM, Assaf EM (2012) CuO-CeO2 catalysts synthesized in one-step: characterization and PROX performance. Int J Hydrog Energy 37:5498–5507

    Article  CAS  Google Scholar 

  69. Kleitz F, Berube F, Guillet-Nicolas R, Yang C-M, Thommes M (2010) Probing adsorption, pore condensation, and hysteresis behavior of pure fluids in three-dimensional cubic mesoporous KIT-6 silica. J Phys Chem C 114:9344–9355

    Article  CAS  Google Scholar 

  70. Wan H, Li X, Ji S, Huang B, Wang K, Li C (2007) Effect of Ni loading and CexZr1-xO2 promoter on Ni based SBA-15 catalysts for steam reforming of methane. J Nat Gas Chem 16:139–147

    Article  CAS  Google Scholar 

  71. Panpranot J, Goodwin JG Jr, Sayari A (2002) Synthesis and characteristics of MCM-41 supported CoRu catalysts. Catal Today 77:269–284

    Article  CAS  Google Scholar 

  72. Abrokwah RY, Dade W, Owen SL, Deshmane V, Rahman M, Kuila D (2016) Effects of mesoporous supports and metals on steam reforming of alcohols [Chapter 6]. In: Nanda S, Sarangi PK, Vo D-VN (eds) Fuel processing and energy utilization. Taylor and Francis, New York, pp 93–108. ISBN 9780429489594. https://doi.org/10.1201/9780429489594

    Chapter  Google Scholar 

  73. Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Methanol–steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network. Appl Catal A Gen, 179:21–29

    Google Scholar 

  74. Gunter MM, Ressler T, Jentoft RE, Bems B (2001) Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ x-ray diffraction and absorption spectroscopy. J Catal 203:133–149

    Article  CAS  Google Scholar 

  75. Yao C-Z, Wang L-C, Liu Y-M, Wu G-S, Cao Y, Dai W-L, He H-Y, Fan K-N (2006) Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts. Appl Catal A Gen 297:151–158

    Article  CAS  Google Scholar 

  76. Chin Y-H, Dagle R, Hu J, Dohnalkova AC, Wang Y (2002) Steam reforming of methanol over highly active Pd/ZnO catalyst. Catal Today 77:79–88

    Article  CAS  Google Scholar 

  77. Heggen M, Penner S, Friedrich M, Dunin-Borkowski RE, Armbruster M (2016) Formation of ZnO patches on ZnPd/ZnO during methanol steam reforming: a strong metal−support interaction effect. J Phys Chem C 120:10460–10465

    Article  CAS  Google Scholar 

  78. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  79. Vaidya PD, Rodrigues AD (2009) Glycerol reforming for hydrogen production: a review. Chem Eng Technol 32:1463–1469

    Article  CAS  Google Scholar 

  80. Velu S, Satoh N, Gopinath C, Suzuki K (2002) Oxidative reforming of bio-ethanol over CuNiZnAl mixed oxide catalysts for hydrogen production. Catal Letters 82:145–152

    Article  CAS  Google Scholar 

  81. Han SJ, Song JH, Yoo J, Park S, Kang KH, Song IK (2017) Sorption-enhanced hydrogen production by steam reforming of ethanol over mesoporous Co/CaO-Al2O3 xerogel catalysts: effect of Ca/Al molar ratio. Int J Hydrog Energy 42:5886–5898

    Article  CAS  Google Scholar 

  82. Gharahshiran VS, Yousefpour M, Amini V (2020) A comparative study of zirconia and yttria promoted mesoporous carbon-nickel-cobalt catalysts in steam reforming of ethanol for hydrogen production. Mol Catal 484:110767

    Article  CAS  Google Scholar 

  83. Moogi S, Lee I-G, Park J-Y (2019) Effect of La2O3 and CeO2 loadings on formation of nickel-phyllosilicate precursor during preparation of Ni/SBA-15 for hydrogen-rich gas production from ethanol steam reforming. Int J Hydrog Energy 44:29537–29546

    Article  CAS  Google Scholar 

  84. Chiou JYZ, Kung H-Y, Wang C-B (2017) Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application. J Saudi Chem Soc 21:205–209

    Article  CAS  Google Scholar 

  85. He S, He S, Zhang L, Li X, Wang J, He D, Lu J, Luo Y (2015) Hydrogen production by ethanol steam reforming over Ni/SBA-15 mesoporous catalysts: effect of Au addition. Catal Today 258:162–168

    Article  CAS  Google Scholar 

  86. Nejat T, Jalalinezhad P, Hormozi F, Bahrami Z (2019) Hydrogen production from steam reforming of ethanol Ni-Co bimetallic catalysts and MCM-41 as support. J Taiwan Inst Chem Eng 97:216–226

    Article  CAS  Google Scholar 

  87. Arslan A, Gunduz S, Dogu T (2014) Steam reforming of ethanol with zirconia incorporated mesoporous silicate supported catalysts. Int J Hydrog Energy 37:5498–5507

    Google Scholar 

  88. Han SJ, Bang Y, Yoo J, Kang KH, Song JH, Seo JG, Song IK (2013) Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 aerogel catalyst. Int J Hydrog Energy 38:15119–15127

    Article  CAS  Google Scholar 

  89. Han SJ, Song JH, Bang Y, Yoo J, Park S, Kang KH, Song IK (2016) Hydrogen production by steam reforming of ethanol over mesoporous Cu-Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrog Energy 41:2554–2563

    Article  CAS  Google Scholar 

  90. Han SJ, Bang Y, Yoo J, Park S, Kang KH, Choi JH, Song JH, Song IK (2014) Hydrogen production by steam reforming of ethanol over P123-assisted mesoporous Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrog Energy 39:10445–10453

    Article  CAS  Google Scholar 

  91. Han SJ, Bang Y, Yoo J, Seo JG, Song IK (2013) Hydrogen production by steam reforming of ethanol over mesoporous Ni-Al2O3-ZrO2 xerogel catalysts: effect of nickel content. Int J Hydrog Energy 38:8285–8292

    Article  CAS  Google Scholar 

  92. Gupta M, Kumar N (2012) Scope and opportunities of using glycerol as an energy source. Renew Sust Energ Rev 16:4551–4556

    Article  CAS  Google Scholar 

  93. Almeida JRM, Favaro LCL, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48

    Article  CAS  Google Scholar 

  94. Sad ME, Duarte HA, Vignatti C, Padro CL, Apesteguia CR (2015) Steam reforming of glycerol: hydrogen production optimization. Int J Hydrog Energy 40:6097–6106

    Article  CAS  Google Scholar 

  95. Dou B, Song Y, Wang C, Chen H, Xu Y (2014) Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: issues and challenges. Renew Sust Energ Rev 30:950–960

    Article  CAS  Google Scholar 

  96. Alcala R, Mavrikakis M, Dumesic JA (2003) DFT studies for cleavage of C-C and C-O bonds in surface species derived from ethanol on Pt (111). J Catal 218:178–190

    Article  CAS  Google Scholar 

  97. Calles JA, Carrero A, Vizcaino AJ, Garcia-Moreno L (2014) Hydrogen production by glycerol steam reforming over SBA-15-supported nickel catalysts: effect of alkaline earth promoters on activity and stability. Catal Today 227:198–206

    Article  CAS  Google Scholar 

  98. Carrero A, Vizcaino AJ, Calles JA, Garcia-Moreno L (2017) Hydrogen production through glycerol steam reforming using Co catalysts supported on SBA-15 doped with Zr, Ce and La. J Energy Chem 26:42–48

    Article  Google Scholar 

  99. Al-Salihi S, Abrokwah R, Dade W, Deshmane V, Hossain T, Kuila D (2020) Renewable hydrogen from glycerol steam reforming using Co-Ni-MgO based SBA-15 nanocatalysts. Int J Hydrog Energy 45:14183–14198

    Article  CAS  Google Scholar 

  100. Senseni AZ, Meshkani F, Rezaei M (2016) Steam reforming of glycerol on mesoporous nanocrystalline Ni/Al2O3 catalysts for H2 production. Int J Hydrog Energy 41:20137–20146

    Article  CAS  Google Scholar 

  101. Silva JM, Soria MA, Madeira LM (2015) Challenges and strategies for optimization of glycerol steam reforming process. Renew Sust Energ Rev 42:1187–1213

    Article  CAS  Google Scholar 

  102. Lee D, Lee HC (2012) A direct synthesis of nickel nanoclusters embedded on multicomponent mesoporous metal oxides and their catalytic properties for glycerol steam reforming to hydrogen. Int J Hydrog Energy 37:18773–18781

    Article  CAS  Google Scholar 

  103. Sadanandam G, Ramya K, Kishore DB, Durgakumari V, Subrahmanyam M, Chary KVR (2014) A study to initiate development of sustainable Ni/γ-Al2O3 catalyst for hydrogen production from steam reforming of biomass-derived glycerol. RSC Adv 4:32429–32437

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from NSF CREST (1242152) and UNC-ROI (#110092). This work was performed at North Carolina A&T State University. The authors greatly appreciate the analytical support provided by Mr. James King (Chemistry Department) and Mr. Nafeezuddin Mohammad (Joint School of Nanoscience and Nanoengineering). We thank Mr. Nafeez Mohammad for his help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kuila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bepari, S., Abrokwah, R., Deshmane, V., Kuila, D. (2021). Steam Reforming of Methanol, Ethanol and Glycerol over Catalysts with Mesoporous Supports: A Comparative Study. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_17

Download citation

Publish with us

Policies and ethics

Navigation