Pd-based Selective Membrane State-of-the-Art

  • Chapter
  • First Online:
Membrane Reactors for Hydrogen Production Processes

Abstract

Dense palladium-based membrane reactors represent as an alternative solution to the conventional systems for pure hydrogen production, assuring important benefits in terms of efficiency and compactness. As a main scope, this chapter will give an overview on the general classification of the membranes, paying particular attention to the palladium-based membranes and their applications, pointing out the most important benefits and the drawback due to their use. Finally, the application of palladium-based membranes in the area of the membrane reactors will be illustrated and such reaction processes in the issue of hydrogen production will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AASR:

Acetic acid steam reforming

BESR:

Bioethanol steam reforming

CVD:

Chemical vapour deposition

ELP:

Electroless plating deposition

EP:

Electroplating

ESR:

Ethanol steam reforming

EVD:

Electrochemical vapour deposition

FBR:

Fixed bed reactor

GSR:

Glycerol steam reforming

HTR:

High temperature reactor

IUPAC:

International Union of Pure and Applied Chemistry

LTR:

Low temperature reactor

ML:

Molecular layering

MR:

Membrane reactor

MS:

Magnetron sputtering

MSR:

Methane steam reforming

PEMFC:

Proton exchange membrane fuel cell

POM:

Partial oxidation of methane

PSA:

Pressure swing adsorption

PVD:

Physical vapour deposition

SRM:

Methanol steam reforming

WGS:

Water gas shift

WHSV:

Weight hourly space velocity

D :

Diffusion coefficient

d p :

Pore diameter

E a :

Apparent activation energy

G :

Geometrical factor

J :

Flux or permeation rate

\( J_{{{\text{H}}_{2} ,{\text{Sieverts} {-} {\text{Fick}}}}} \) :

Hydrogen flux through the membrane according to Sieverts–Fick law

\( J_{{{\text{H}}_{2} }} \) :

Hydrogen flux through the membrane

J i :

Flux of the i-species across the membrane

J m :

Mass flux

M i :

Molecular weight of the i-species

n :

Dependence factor of the hydrogen flux on the hydrogen partial pressure

p :

Pressure

\( Pe_{{{\text{H}}_{2} }}^{0} \) :

The pre-exponential factor

\( Pe_{{{\text{H}}_{2} }} \) :

The hydrogen permeability

\( p_{{{\text{H}}_{2} ,{\text{perm}}}} \) :

Hydrogen partial pressures at the permeate side

\( p_{{{\text{H}}_{2} ,{\text{ret}}}} \) :

Hydrogen partial pressures at the retentate side

R :

Universal gas constant

T :

Absolute temperature

X :

Coordinate perpendicular to the transport barrier

\( \Updelta H_{{298\,{\text{K}}}}^{\circ } \) :

Enthalpy variation in standard conditions

Δp i :

Pressure difference of species

α :

Ideal separation factor or selectivity

δ :

Membrane thickness

ϕ pore :

Pore diameter

References

  1. http://scopees.elsevier.com

  2. Juenker DW, Van Swaay M, Birchenall CE (1955) On the use of palladium diffusion membranes for the purification of hydrogen. Rev Sci Instrum 26:888

    Google Scholar 

  3. Gao H, Lin YS, Li Y, Zhang B (2004) Chemical stability and its improvement of palladium-based metallic membranes. Ind Eng Chem Res 43:6920–6930

    Google Scholar 

  4. Goltsov V, Veziroglu N (2001) From hydrogen economy to hydrogen civilization. Int J Hydrogen Energy 26:909–915

    Google Scholar 

  5. Koros WJ, Ma YH, Shimidzu T (1996) Terminology for membranes and membrane processes. J Memb Sci 120:149–159

    Google Scholar 

  6. Khulbe KC, Feng CY, Matsuura T (2007) Synthetic polymeric membranes, characterization by atomic force microscopy. Springer, pp 216, ISBN:3540739939

    Google Scholar 

  7. **a Y, Lu Y, Kamata K, Gates B, Yin Y (2003) Macroporous materials containing three-dimensionally periodic structures. In: Yang P (ed) Chemistry of nanostructured materials. World Scientific, Singapore, pp 69–100

    Google Scholar 

  8. Catalytica® (1988) Catalytic membrane reactors: concepts and applications, Catalytica Study N. 4187 MR

    Google Scholar 

  9. Van Veen HM, Bracht M, Hamoen E, Alderliesten PT (1996) Feasibility of the application of porous inorganic gas separation membranes in some large-scale chemical processes. In: Burggraaf AJ, Cot L (eds) Fundamentals of inorganic membrane science and technology, vol 14. Elsevier, New York, pp 641–681

    Google Scholar 

  10. Mallevialle J, Odendaal PE, Wiesner MR (eds) (1998) Water treatment membrane processes. McGraw-Hill Publishers, New York

    Google Scholar 

  11. Mulder M (1996) Basic principles of membrane technology. Kluwer Academic, Dordrecht, p 564

    Google Scholar 

  12. Saracco G, Specchia V (1994) Catalytic inorganic membrane reactors: present experience and future opportunities. Catal Rev Sci Eng 36:305–384

    Google Scholar 

  13. Knozinger H, Ratnasamy P (1978) Catalytic aluminas: surface models and characterization of surface sites. Catal Rev Sci Eng 17:31–70

    Google Scholar 

  14. Kapoor A, Yang RT, Wong C (1989) Surface diffusion. Catal Rev 31:129–214

    Google Scholar 

  15. Falconer JL, Noble RD, Sperry DP (1995) Catalytic membrane reactors. In: Noble RD, Stern SA (eds) Membrane separations technology: principles and applications. Elsevier, New York, pp 669–712

    Google Scholar 

  16. Sperry DP, Falconer JL, Noble RD (1991) Methanol–hydrogen separation by capillary condensation in inorganic membranes. J Memb Sci 60:185–193

    Google Scholar 

  17. Lee KH, Hwang ST (1986) Transport of condensible vapors through a microporous vycor glass membrane. J Coll Int Sci 110:544–555

    Google Scholar 

  18. Ulhorn RJR, Keizer K, Burggraaf AJ (1992) Gas transport and separation with ceramic membranes. Part I. Multilayer diffusion and capillary condensation. J Memb Sci 66:259–269

    Google Scholar 

  19. Adhikari S, Fernand S (2006) Hydrogen membrane separation techniques. Ind Eng Chem Res 45:875–881

    Google Scholar 

  20. Stambouli A, Traversa E (2002) Fuel cells, an alternative to standard sources of energy. Renew Sust Energy Rev 6:295–304

    Google Scholar 

  21. Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53

    Google Scholar 

  22. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II. Engineering, technology, development and application aspects. J Power Sources 102:253–269

    Google Scholar 

  23. http://ec.europa.eu/research/rtdinfo/42/01/article_1315_en.html Accessed 24 Nov 2010

  24. http://www.hydrogenassociation.org/general Accessed 24 Nov 2010

  25. Rifkin J (2002) The hydrogen economy: the creation of the worldwide energy web and the redistribution of power on earth. Jeremy P. Tarcher, Penguin, ISBN 1-58542-193-6

    Google Scholar 

  26. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu ZS, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation. J Power Sources 165:739–756

    Google Scholar 

  27. Barelli L, Bidini G, Gallorini F, Servili S (2008) Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy 33:554–570

    Google Scholar 

  28. Basile A (2008) Hydrogen production using Pd-based membrane reactors for fuel cells. Top Catal 51:107–122

    Google Scholar 

  29. Tosti S, Bettinali L, Violante V (2000) Rolled thin Pd and Pd–Ag membranes for hydrogen separation and production. Int J Hydrogen Energy 25:319–325

    Google Scholar 

  30. Cheng YS, Pena MA, Fierro JL, Hui DCW, Yeung KL (2002) Performance of alumina, zeolite, palladium, Pd–Ag alloy membranes for hydrogen separation from Towngas mixture. J Memb Sci 204:329–340

    Google Scholar 

  31. Wieland S, Melin T, Lamm A (2002) Membrane reactors for hydrogen production. Chem Eng Sci 57:1571–1576

    Google Scholar 

  32. Valenti G, Macchi F (2008) Proposal of an innovative, high efficiency, large-scale hydrogen liquefier. Int J Hydrogen Energy 33:3116–3121

    Google Scholar 

  33. Damle AS (2009) Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation—experimental studies. J Power Sources 186:167–177

    Google Scholar 

  34. Gallucci F, De Falco M, Tosti S, Marrelli L, Basile A (2007) The effect of the hydrogen flux pressure and temperature dependence factors on the membrane reactor performances. Int J Hydrogen Energy 32:4052–4058

    Google Scholar 

  35. Koros WJ, Fleming GK (1993) Membrane-based gas separation. J Memb Sci 83:1–80

    Google Scholar 

  36. Dolan MD, Dave NC, Ilyushechkin AY, Morpeth LD, McLennan KG (2006) Composition and operation of hydrogen-selective amorphous alloy membranes. J Memb Sci 285:30–55

    Google Scholar 

  37. Gallucci F, Tosti S, Basile A (2008) Synthesis, characterization and applications of palladium membranes. In: Mallada R, Menendez M (eds) Inorganic membranes: synthesis, characterization and applications, Chapter 8. Elsevier, Amsterdam (Netherlands)

    Google Scholar 

  38. Grashoff GJ, Pilkington CE, Corti CW (1983) The purification of hydrogen—a review of the technology emphasing, the current status of palladium membrane diffusion. Platinum Met Rev 27:157–168

    Google Scholar 

  39. Lewis FA, Kandasamy K, Baranowski B (1988) The “Uphill” diffusion of hydrogen—strain-gradient-induced effects in palladium alloy membranes. Platinum Met Rev 32:22–26

    Google Scholar 

  40. Hsieh HP (1989) Inorganic membrane reactors—a review. AIChE Symp Ser 85:53–67

    Google Scholar 

  41. Brodowsky H (1972) On the non-ideal solution behavior of hydrogen in metals. Ber Bunsenges Physik Chem 76:740–749

    Google Scholar 

  42. Shu J, Grandjean BPA, Van Neste A, Kaliaguine S (1991) Catalytic palladium-based membrane reactors: a review. Can J Chem Eng 69:1036–1060

    Google Scholar 

  43. Edlund DJ, Pledger WA (1993) Thermolysis of hydrogen sulfide in a metal-membrane reactor. J Memb Sci 77:255–264

    Google Scholar 

  44. Edlund DJ, Pledger WA (1994) Catalytic platinum-based membrane reactor for removal of H2S from natural gas streams. J Memb Sci 94:111–119

    Google Scholar 

  45. Noordermeer A, Kok GA, Nieuwenhuys BE (1986) Comparison between the adsorption properties of Pd (111) and PdCu (111) surfaces for carbon monoxide and hydrogen. Surf Sci 172:349–362

    Google Scholar 

  46. Li A, Liang W, Hughes R (2000) The effect of carbon monoxide and steam on the hydrogen permeability of a Pd/stainless steel membrane. J Memb Sci 165:135–141

    Google Scholar 

  47. Amandusson H, Ekedahl LG, Dannetun H (2000) The effect of CO and O2 on hydrogen permeation through a palladium membrane. Appl Surf Sci 153:259–267

    Google Scholar 

  48. Heras JM, Estiù G, Viscido L (1997) The interaction of water with clean palladium films: thermal desorption and work fucnction study. Appl Surf Sci 108:455–464

    Google Scholar 

  49. McCool BA, Lin YS (2001) Nanostructured thin palladium-silver membranes: effects of grain size on gas permeation properties. J Mater Sci 36:3221–3227

    Google Scholar 

  50. Nishimura C, Komaki M, Hwang S, Amano M (2002) V–Ni alloy membranes for hydrogen purification. J Alloys Compd 330–332:902–906

    Google Scholar 

  51. Luo W, Ishikawa K, Aoki K (2006) High hydrogen permeability in the Nb-rich Nb–Ti–Ni alloy. J Alloys Compd 407:115–117

    Google Scholar 

  52. Adams TM, Mickalonis J (2007) Hydrogen permeability of multiphase V–Ti–Ni metallic membranes. Mater Lett 61:817–820

    Google Scholar 

  53. Mallada R, Menéndez M (eds) (2008) Inorganic membranes: synthesis, characterization and applications, Elsevier, Amsterdam (Netherlands)

    Google Scholar 

  54. Uemiya S (1999) State-of-art of supported metal membranes for gas separation. Sep Purity Methods 28:51–85

    Google Scholar 

  55. Tosti S, Borelli R, Borgognoni F, Favuzza P, Rizzello C, Tarquini P (2008) Study of a dense metal membrane reactor for hydrogen separation from hydroiodic acid decomposition. Int J Hydrogen Energy 33:5106–5114

    Google Scholar 

  56. Howard BH, Killmeyer RP, Rothenberger KS, Cugini AV, Morreale BD, Enick RM, Bustamante F (2004) Hydrogen permeance of palladium–copper alloy membranes over a wide range of temperatures and pressures. J Memb Sci 241:207–218

    Google Scholar 

  57. Gryaznov VM (2000) Metal containing membranes for the production of ultrapure hydrogen and the recovery of hydrogen isotopes. Sep Purity Methods 29:171–187

    Google Scholar 

  58. Hwang ST, Kammermeyer K (1975) Techniques in chemistry: membranes in separation. Wiley Interscience, New York

    Google Scholar 

  59. McKinley DL, Nitro WV (1967) Metal alloy for hydrogen separation and purification. US patent 3,350,845

    Google Scholar 

  60. Hara S, Hatakeyama N, Itoh N, Kimura HM, Inoue A (2002) Hydrogen permeation through palladium-coated amorphous Zr–M–Ni (M = Ti, Hf) alloy membranes. Desalination 144:115–120

    Google Scholar 

  61. Basile A, Gallucci F, Iulianelli A, Tereschenko GF, Ermilova MM, Orekhova NV (2008) Ti–Ni–Pd dense membranes—the effect of the gas mixtures on the hydrogen permeation. J Memb Sci 310:44–50

    Google Scholar 

  62. Criscuoli A, Basile A, Drioli E, Loiacono O (2001) An economic feasibility study for water gas shift membrane reactor. J Memb Sci 181:21–27

    Google Scholar 

  63. Wilde G, Dinda GP, Rösner H (2005) Synthesis of bulk nanocrystalline materials by repeated cold rolling. Adv Eng Mat 7:11–15

    Google Scholar 

  64. Smith GV, Brower WE, Matyjaszczyk MS, Pettit TL (1981) Metallic glasses: new catalyst systems. In: Seiyama T, Tanabe K (eds) Proceedings of the 7th international congress on catalysis part A, Elsevier, New York, pp 355–363

    Google Scholar 

  65. Molnar A, Smith GV, Bartok M (1989) New catalytic materials from amorphous metal alloys. Adv Catal 36:329–383

    Google Scholar 

  66. Kishimoto S, Yoshida N, Arita Y, Flanagan TB (1990) Solution of hydrogen in cold-worked and annuale Pd95Ag5 alloys. Ber Bunsenges Physik Chem 94:612–615

    Google Scholar 

  67. Reichelt K, Jiang X (1990) The preparation of thin films by physical vapor deposition methods. Thin Solid Films 191:91–126

    Google Scholar 

  68. Mattox DM (1998) Handbook of physical vapor deposition (PVD) processing: film formation, adhesion, surface preparation and contamination control. Noyes Publications, Westwood, NJ, ISBN 0815514220

    Google Scholar 

  69. Jones AC, Hitchman ML (2008) Chemical vapour deposition precursors, processes and applications. RSC Publishing, London. doi:10.1039/9781847558794

  70. Biswas DR (1986) Review: deposition processes for films and coatings. J Mater Sci 21:2217–2223

    Google Scholar 

  71. Mohler JB (1969) Electroplating and related processes. Chemical Publishing Co., New York, ISBN 0-8206-0037-7

    Google Scholar 

  72. Wise EM (1968) Palladium-recovery properties and uses. Academic Press, New York

    Google Scholar 

  73. Sturzenegger B, Puippe JC (1984) Electrodeposition of palladium–silver alloys from ammoniacal electrolytes. Platinum Met Rev 20:117–124

    Google Scholar 

  74. Reid HR (1985) Palladium–nickel electroplating. Effects of solution parameters on alloy properties. Platinum Met Rev 29:61–62

    Google Scholar 

  75. Loweheim FA (1974) Modern electroplating. Wiley, New York, pp 342–357 and 739–747

    Google Scholar 

  76. Malygin AA (2006) The molecular layering nanotechnology: basis and application. J Ind Eng Chem 12:1–11

    Google Scholar 

  77. Tereshchenko GF, Orekhova NV, Ermilova MM, Malygin AA, Orlova AI (2006) Nanostructured phosphorus–oxide-containing composite membrane catalysts. Catal Today 118:85–89

    Google Scholar 

  78. Huang Y, Dittmeyer R (2007) Preparation of thin palladium membranes on a porous support with rough surface. J Memb Sci 302:160–170

    Google Scholar 

  79. Altinisik O, Dogan M, Dogu G (2005) Preparation and characterization of palladium-plated porous glass for hydrogen enrichment. Catal Today 105:641–646

    Google Scholar 

  80. Wang D, Flanagan TB, Shanahan KL (2004) Permeation of hydrogen through pre-oxidized membranes in presence and absence of CO. J Alloys Compd 372:158–164

    Google Scholar 

  81. Van Dyk L, Miachon S, Lorenzen L, Torres M, Fiaty K, Dalmon JA (2003) Comparison of microporous MFI and dense Pd membrane performances in an extractor-type CMR. Catal Today 82:167–177

    Google Scholar 

  82. Itoh N, Akiha T, Sato T (2005) Preparation of thin palladium composite membrane tube by a CVD technique and its hydrogen permselectivity. Catal Today 104:231–237

    Google Scholar 

  83. Kleinert A, Grubert G, Pan X, Hamel C, Seidel-Morgenstern A, Caro J (2005) Compatibility of hydrogen transfer via Pd-membranes with the rates of heterogeneously catalysed steam reforming. Catal Today 104:267–273

    Google Scholar 

  84. Liang W, Hughes R (2005) The effect of diffusion direction on the permeation rate of hydrogen in palladium composite membranes. Chem Eng J 112:81–86

    Google Scholar 

  85. Okada S, Mineshige A, Kikuchi T, Kobune M, Yazawa T (2007) Cermet-type hydrogen separation membrane obtained from fine particles of high temperature proton-conductive oxide and palladium. Thin Solid Films 515:7342–7346

    Google Scholar 

  86. Tong J, Suda H, Haraya K, Matsumura Y (2005) A novel method for the preparation of thin dense Pd membrane on macroporous stainless steel tube filter. J Memb Sci 260:10–18

    Google Scholar 

  87. Ryi SK, Park JS, Kim SH, Cho SH, Park JS, Kim DW (2006) Development of a new porous metal support of metallic dense membrane for hydrogen separation. J Memb Sci 279:439–445

    Google Scholar 

  88. Wang D, Tong J, Xu H, Matsamura Y (2004) Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide. Catal Today 93–95:689–693

    Google Scholar 

  89. Nair BKR, Harold MP (2007) Pd encapsulated and nanopore hollow fiber membranes: synthesis and permeation studies. J Memb Sci 290:182–195

    Google Scholar 

  90. Gao H, Lin JYS, Li Y, Zhang B (2005) Electroless plating synthesis, characterization and permeation properties of Pd–Cu membranes supported on ZrO2 modified porous stainless steel. J Memb Sci 265:142–152

    Google Scholar 

  91. Huang TC, Wei MC, Chen HI (2003) Preparation of hydrogen-permselective palladium–silver alloy composite membranes by electroless co-deposition. Sep Purif Technol 32:239–245

    Google Scholar 

  92. Liang W, Hughes R (2005) The catalytic dehydrogenation of isobutane to isobutene in a palladium/silver composite membrane reactor. Catal Today 104:238–243

    Google Scholar 

  93. Tong J, Shirai R, Kashima Y, Matsumura Y (2005) Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation. J Memb Sci 260:84–89

    Google Scholar 

  94. Nair BKR, Choi J, Harold MP (2007) Electroless plating and permeation features of Pd and Pd/Ag hollow fiber composite membranes. J Memb Sci 288:67–84

    Google Scholar 

  95. Roa F, Douglas WJ, Mc Cormik RL, Paglieri SN (2003) Preparation and characterization of Pd–Cu composite membranes for hydrogen separation. Chem Eng J 93:11–22

    Google Scholar 

  96. Graham T (1866) On the absorption and dialytic separation of gases by colloid septa, Phil R Soc Lond 156:399–439

    Google Scholar 

  97. Booth JCS, Doyle VL, Gee SM, Miller J, Scholtz LA, Walker PA (1996) Advanced hydrogen separation via thin Pd membranes. In: Proceedings of the 11th World Hydrogen Energy Conference, Stuttgart, Germany, pp 867–878

    Google Scholar 

  98. Cole MJ (1981) The generator of pure hydrogen for industrial applications. Platinum Met Rev 25:12–13

    Google Scholar 

  99. Philpott J (1985) Hydrogen diffusion technology. Commercial applications of palladium membrane. Platinum Met Rev 29:12–16

    Google Scholar 

  100. Paturzo L, Basile A, Drioli E (2002) High temperature membrane reactors and integrated membrane operations. Rev Chem Eng 18:511–551

    Google Scholar 

  101. Xuan J, Leung MKH, Leung DYC, Ni M (2009) A review of biomass-derived fuel processors for fuel cell systems. Renew Sust Energy Rev 13:1301–1313

    Google Scholar 

  102. Lin YM, Rei MH (2000) Process development for generating high purity hydrogen by using supported membrane reactor as steam reformer. Int J Hydrogen Energy 25:211–219

    Google Scholar 

  103. Lin YM, Liu SL, Chuang CH, Chu YT (2003) Effect of incipient removal of hydrogen through palladium membrane on the conversion of methane steam reforming. Experimental and modeling. Catal Today 82:127–139

    Google Scholar 

  104. Chen Y, Wang Y, Xu H, **ong G (2008) Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor. Appl Catal B 80:283–294

    Google Scholar 

  105. Uemiya S, Sato N, Ando H, Matsuda T, Kikuchi E (1991) Steam reforming of methane in a hydrogen-permeable membrane reactor. Appl Catal 67:223–230

    Google Scholar 

  106. Shu J, Grandjean BPA, Kaliaguine S (1995) Asymmetric Pd–Ag/stainless steel catalytic membranes for methane steam reforming. Catal Today 25:327–332

    Google Scholar 

  107. Jorgensen S, Nielsen PEH, Lehrmann P (1995) Steam reforming of methane in membrane reactor. Catal Today 25:303–307

    Google Scholar 

  108. Kikuchi E, Nemoto Y, Kajiwara M, Uemiya S, Kojima T (2000) Steam reforming of methane in membrane reactors: comparison of electroless-plating and CVD membranes and catalyst packing modes. Catal Today 56:75–81

    Google Scholar 

  109. Basile A, Paturzo L, Vazzana A (2003) Membrane reactor for the production of hydrogen and higher hydrocarbons from methane over Ru/Al2O3 catalyst. Chem Eng J 93:31–39

    Google Scholar 

  110. Tong J, Matsumura Y (2005) Effect of catalytic activity on methane steam reforming in hydrogen-permeable membrane reactor. Appl Catal A 286:226–231

    Google Scholar 

  111. Patil CS, Annaland MVS, Kuipers JAM (2007) Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: experimental demonstration and model validation. Chem Eng Sci 62:2989–3007

    Google Scholar 

  112. Galuszka J, Pandey RN, Ahmed S (1998) Methane conversion to syngas in a palladium membrane reactor. Catal Today 46:83–89

    Google Scholar 

  113. Gallucci F, Tosti S, Basile A (2008) Pd–Ag tubular membrane reactors for methane dry reforming: a reactive method for CO2 consumption and H2 production. J Memb Sci 317:96–105

    Google Scholar 

  114. Kikuchi E (1995) Palladium/ceramic membranes for selective hydrogen permeation and their application to membrane reactor. Catal Today 25:333–337

    Google Scholar 

  115. Kikuchi E, Uemiya S, Sato N, Inoue H, Ando H, Matsuda T (1989) Membrane reactor using microporous glass supported thin film of palladium. Application to the water gas shift reaction. Chem Lett 18:489–492

    Google Scholar 

  116. Basile A, Chiappetta G, Tosti S, Violante V (2001) Experimental and simulation of both Pd and Pd/Ag for a water gas shift membrane reactor. Sep Purif Technol 25:549–571

    Google Scholar 

  117. Basile A, Violante V, Santella F, Drioli E (1995) Membrane integrated system in the fusion reactor fuel cycle. Catal Today 25(3–4):321–326

    Google Scholar 

  118. Iyoha O, Enick R, Killmeyer R, Howard B, Morreale B, Ciocco M (2007) Wall-catalyzed water-gas shift reaction in multi-tubular Pd and 80 wt%Pd–20 wt%Cu membrane reactors at 1173 K. J Memb Sci 298:14–23

    Google Scholar 

  119. Uemiya S, Sato N, Ando H, Kikuchi E (1991) The water gas shift reaction assisted by a palladium membrane reactor. Ind Eng Chem Res 30:585–589

    Google Scholar 

  120. Basile A, Criscuoli A, Santella F, Drioli E (1996) Membrane reactor for water gas shift reaction. Gas Sep Purif 10:243–254

    Google Scholar 

  121. Tosti S, Violante V, Basile A, Chiappetta G, Castelli S, De Francesco M, Scaglione S, Sarto F (2000) Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle. Fusion Eng Des 49–50:953–958

    Google Scholar 

  122. Criscuoli A, Basile A, Drioli E (2000) An analysis of the performance of membrane reactors for the water–gas shift reaction using gas feed mixtures. Catal Today 56:53–64

    Google Scholar 

  123. Flytzani-Stephanopoulos M, Qi X, Kronewitter S (2004) Water–gas shift with integrated hydrogen separation process. Final report to DOE, Grant # DEFG2600-NT40819, pp 1–38

    Google Scholar 

  124. Pfeffer M, Wukovits W, Beckmann G, Friedl A (2007) Analysis and decrease of the energy demand of bioethanol-production by process integration. Appl Thermal Eng 27:2657–2664

    Google Scholar 

  125. Haga F, Nakajima T, Yamashita K, Mishima S (1998) Effect of cristallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol. React Kinet Catal Lett 63:253–259

    Google Scholar 

  126. Llorca J, Homs N, Sales J, de la Piscina PR (2002) Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J Catal 209:306–317

    Google Scholar 

  127. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J Power Sources 124:99–103

    Google Scholar 

  128. Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19:2098–2106

    Google Scholar 

  129. Basile A, Gallucci F, Iulianelli A, Tosti S, Drioli E (2006) The pressure effect on ethanol steam reforming in membrane reactor: experimental study. Desalination 200:671–672

    Google Scholar 

  130. Basile A, Gallucci F, Iulianelli A, Tosti S (2008) CO-free hydrogen production by ethanol steam reforming in a Pd–Ag membrane reactor. Fuel Cells 1:62–68

    Google Scholar 

  131. Benito M, Sanz JL, Isabel R, Padilla R, Arjona R, Daza L (2005) Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. J Power Sources 151:11–17

    Google Scholar 

  132. Dolgykh L, Stolyarchuk I, Denyega I, Strizhak P (2006) The use of industrial dehydrogenation catalyst for hydrogen production from bioethanol. Int J Hydrogen Energy 31:1607–1610

    Google Scholar 

  133. Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S (2006) Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts. Int J Hydrogen Energy 31:2193–2199

    Google Scholar 

  134. Gernot E, Aupretre F, Deschamps A, Epron F, Merecot P, Duprez D, Etievant C (2006) Production of hydrogen from bioethanol in catalytic membrane reactor. 16th Confèrence Mondiale de l’Hydrogène Energie (WHEC16), Lyon (France) http://www.ceth.fr/download/presse/art_ceth_3.pdf

  135. Iulianelli A, Liguori S, Longo T, Tosti S, Pinacci P, Basile A (2010) An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part II: reaction pressure, sweep factor and WHSV effects. Int J Hydrogen Energy. 35:3159–3164

    Google Scholar 

  136. Iulianelli A, Basile A (2010) An experimental study on bio-ethanol steam reforming in a catalytic membrane reactor. Part I: temperature and sweep-gas flow configuration effects. Int J Hydrogen Energy. 35:3170–3177

    Google Scholar 

  137. Tosti S, Bettinali L (2004) Diffusion bonding of Pd–Ag rolled membranes. J Mater Sci 39:3041–3046

    Google Scholar 

  138. Cifre GP, Badr O (2007) Renewable hydrogen utilization for the production of methanol. Energy Conver Manag 48:519–527

    Google Scholar 

  139. Lin YM, Rei MH (2001) Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor. Catal Today 67:77–84

    Google Scholar 

  140. Basile A, Gallucci F, Paturzo L (2005) A dense Pd/Ag membrane reactor for methanol steam reforming: experimental study. Catal Today 104:244–250

    Google Scholar 

  141. Arstad B, Venvik H, Klette H, Walmsley JC, Tucho WM, Holmestad R, Holmen A, Bredesen R (2006) Studies of self-supported 1.6 μm Pd/23 wt% Ag membranes during and after hydrogen production in a catalytic membrane reactor. Catal Today 118:63–72

    Google Scholar 

  142. Basile A, Tosti S, Capannelli G, Vitulli G, Iulianelli A, Gallucci F, Drioli E (2006) Co-current and counter-current modes for methanol steam reforming membrane reactor: experimental study. Catal Today 118:237–245

    Google Scholar 

  143. Basile A, Parmaliana A, Tosti S, Iulianelli A, Gallucci F, Espro C, Spooren J (2008) Hydrogen production by methanol steam reforming carried out in membrane reactor on Cu/Zn/Mg-based catalyst. Catal Today 137:17–22

    Google Scholar 

  144. Iulianelli A, Longo T, Basile A (2008) Methanol steam reforming in a dense Pd–Ag membrane reactor: the pressure and WHSV effects on CO-free H2 production. J Memb Sci 323:235–240

    Google Scholar 

  145. Iulianelli A, Longo T, Basile A (2008) Methanol steam reforming reaction in a Pd–Ag membrane reactor for CO-free hydrogen production. Int J Hydrogen Energy 33:5583–5588

    Google Scholar 

  146. Valliyappan T, Ferdous D, Bakhshi NN, Dalai AK (2008) Production of hydrogen and syngas via steam gasification of glycerol in a fixed-bed reactor. Top Catal 49:59–67

    Google Scholar 

  147. Adams J, Cassarino C, Lindstrom J, Spangler L, Binder MJ, Holcomb FH (2004) Canola oil fuel cell demonstration I. US Army Corps of Engineers, Washington, DC

    Google Scholar 

  148. Iulianelli A, Longo T, Liguori S, Basile A (2010) Production of hydrogen via glycerol steam reforming in a Pd–Ag membrane reactor over Co–Al2O3 catalyst. Asia Pac J Chem Eng. doi:10.1002/apj.365

  149. Iulianelli A, Seelam PK, Liguori S, Longo T, Keiski R, Calabrò V, Basile A (2010) Hydrogen production for PEM fuel cell by gas phase reforming of glycerol as byproduct of bio-diesel. The use of a Pd–Ag membrane reactor at middle reaction temperature. Int J Hydrogen Energy

    Google Scholar 

  150. Liu BF, Ren NQ, Tang J, Ding J, Liu WZ, Xu JF, Cao GL, Guo WQ, **e GJ (2009) Bio-hydrogen production by mixed culture of photo- and dark-fermentation bacteria. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2009.05.005

  151. Takanabe K, Aika K, Seshanb K, Lefferts L (2004) Sustainable hydrogen from bio-oil-steam reforming of acetic acid as a model oxygenate. J Catal 227:101–108

    Google Scholar 

  152. Hu X, Lu G (2007) Investigation of steam reforming of acetic acid to hydrogen over Ni–Co metal catalyst. J Mol Catal A 261:43–48

    Google Scholar 

  153. Bimbela F, Oliva M, Ruiz J, Garc′ıa L, Arauzo J (2007) Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids. J Anal Appl Pyrolysis 79:112–120

    Google Scholar 

  154. Basagiannis AC, Verykios XE (2007) Catalytic steam reforming of acetic acid for hydrogen production. Int J Hydrogen Energy 32:3343–3355

    Google Scholar 

  155. Basile A, Gallucci F, Iulianelli A, Borgognoni F, Tosti S (2008) Acetic acid steam reforming in a Pd–Ag membrane reactor: the effect of the catalytic bed pattern. J Memb Sci 311:46–52

    Google Scholar 

  156. Iulianelli A, Longo T, Basile A (2008) CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd–Ag membrane reactor: the effect of co-current and counter-current mode. Int J Hydrogen Energy 33:4091–4096

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Basile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag London Limited

About this chapter

Cite this chapter

Basile, A., Iulianelli, A., Longo, T., Liguori, S., De Falco, M. (2011). Pd-based Selective Membrane State-of-the-Art. In: De De Falco, M., Marrelli, L., Iaquaniello, G. (eds) Membrane Reactors for Hydrogen Production Processes. Springer, London. https://doi.org/10.1007/978-0-85729-151-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-85729-151-6_2

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-0-85729-150-9

  • Online ISBN: 978-0-85729-151-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation