Depth-Dependent Bulk Elemental Analysis Using Negative Muons

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

The use of muonic X-rays for cultural heritage studies has steadily increased over the past few years. This includes investigations ranging from ancient coins to statues to meteorites to biomaterials. These studies use negative muons, which with a controllable momentum have a well-defined implantation depth (from microns to cm). This technique has many similarities to X-ray fluorescence, except that the negative muon has a mass ~200 times greater than that of an electron. This results in the emission of high energy X-rays in the range of 10s keV to 8 MeV. Therefore enabling elements from Li and upwards (in Z) being easily observed. Also, elements next to each other in the periodic table can be distinguished. Moreover, the final interaction with the negative muon and the nucleus can cause the emission of isotope specific gammas. Thus, enabling the possibility of isotope analysis. This chapter is a general introduction to the technique followed by a range of examples. This hopefully showcases the basics and the power of this unique and increasingly popular technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosen L (1971) Relevance of particle accelerators to national goals. Science 173:490–497

    Article  Google Scholar 

  2. Daniel H (1969) The muon as a tool for scanning the interior of the human body. Nucl Med 4:311–319

    Google Scholar 

  3. Köhler E, Bergmann R, Daniel H, Ehrhart P, Hartmann FJ (1981) Application of muonic X-ray techniques to the elemental analysis of archeological objects. Nucl Instrum Methods Phys Res 187:563–568

    Article  Google Scholar 

  4. Daniel H, Hartmann FJ, Köhler E (1985) Analysis of glasses with muonic X-rays. Fresenius Z Anal Chem 321:65–67

    Article  Google Scholar 

  5. Hillier AD, Paul DMcK, Ishida K (2015) Probing beneath the surface without a scratch — Bulk non-destructive elemental analysis using negative muons. Microchem J 125:203–207

    Article  Google Scholar 

  6. Ninomiya K, Nagatomo T, Kubo KM, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T, Higemoto W (2010) Development of elemental analysis by muonic X-ray measurement. J-PARC 225:012040

    Google Scholar 

  7. Engfer R, Schneuwly H, Vuilleumier JL, Walter HK, Zehnder A (1974) Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. Atomic Data Nucl Tables 14:509–597

    Article  Google Scholar 

  8. Zinatulina D, Brianҫon C, Brudanin V, Egorov V, Perevoshchikov L, Shirchenko M, Yutlandov I, Petitjean C (2018) Electronic catalogue of muonic X-rays. Eur Phys J Conf 177(6):03006

    Article  Google Scholar 

  9. Thomason JWG (2019) The ISIS Spallation Neutron and Muon Source – the first thirty three years. Nucl Instrum Methods Phys Res A 917:61–67

    Article  Google Scholar 

  10. Matsuzaki T, Ishida K, Nagamine K, Watanabe I, Eaton GH, Williams WG (2001) The RIKEN-RAL pulsed muon facility. Nucl Instrum Methods Phys Res A 465:365–383

    Article  Google Scholar 

  11. Hillier AD, Lord JS, Ishida K, Rogers C (2019) Muons at ISIS. Philos Trans R Soc A Math Phys Eng Sci 377:1–7

    Google Scholar 

  12. Eaton GH, Carne A, Cox SFJ, Davies JD, De Renzi R, Hartmann O, Kratzer A, Ristori C, Scott CA, Stirling GC, Sundqvist T (1988) Commissioning of the Rutherford Appleton pulsed muon facility. Nucl Instrum Methods Phys Res A A269:483–491

    Article  Google Scholar 

  13. Hillier AD, Adams DJ, Baker PJ, Bekasovs A, Coomer FC, Cottrell SP, Higgins SD, Jago SJS, Jones KG, Lord JS, Markvardsen A, Parker PG, Peck JNT, Pratt FL, Telling MTF, Williamson RE (2014) Developments at the ISIS muon source and the concomitant benefit to the user community. J Phys Conf Ser 551:012067

    Article  Google Scholar 

  14. Eaton GH, Clarke-Gayther MA, Scott CA, Uden CN, Williams WG (1993) Fast E-field switching of a pulsed surface muon beam: the commissioning of the European muon facility at ISIS. Nucl Instrum Methods Phys Res A 342:319–331

    Article  Google Scholar 

  15. Miyake Y, Shimomura K, Kawamura N, Strasser P, Koda A, Makimura S, Fujimori H, Ikedo Y, Nakahara K, Takeshita S, Kato M, Kojima K, Kobayashi Y, Nishiyama K, Kadono R, Higemoto W, Itoc TU, Ninomiya K, Kubo K, Nagamine K (2012) J-PARC muon facility, MUSE. Phys Procedia 30:46–49

    Article  Google Scholar 

  16. Marshall GM (1992) Muon beams and facilities at TRIUMF. In: Jungmann K, Hughes VW, zu Putlitz G (eds) The future of muon physics, vol 56(Suppl 1). Springer, Berlin/Heidelberg, pp S226–S231

    Google Scholar 

  17. CMMS. TRIUMF. [Online] [Cited: 9 30, 2019]. http://musr.ca/

  18. SmuS Beamlines. PSI. [Online] [Cited: 9 30, 2019]. https://www.psi.ch/en/smus/beamlines

  19. Ziegler J (2015) SRIM – the stop** and range of ions in matter

    Google Scholar 

  20. Ninomiya K, Kubo MK, Nagatomo T, Higemoto W, Ito TU, Kawamura N, Strasser P, Shimomura K, Miyake Y, Suzuki T, Kobayashi Y, Sakamoto S, Shinohara A, Sait T (2015) nondestructive elemental depth-profiling analysis by muonic X-ray measurement. Anal Chem 87:4597

    Article  Google Scholar 

  21. Kubo MK, Moriyama H, Tsuruoka Y, Sakamoto S, Koseto E, Saito T, Nishiyama K (2008) Non-destructive elemental depth-profiling with muonic X-rays. J Radioanal Nucl Chem 278:777–781

    Article  Google Scholar 

  22. Measday DF (2001) The nuclear physics of muon capture. Phys Rep 354:243–409

    Article  Google Scholar 

  23. Borie E, Rinker GA (1982) The energy levels of muonic atoms. Rev Mod Phys 54:67–118

    Article  Google Scholar 

  24. Evans HJ (1973) Gamma-rays following muon capture. Nucl Phys A A207:379–400

    Article  Google Scholar 

  25. Anderson HL, Hargrove CK, Hincks EP, McAndrews JD, McKee RJ, Barton RD, Kessler D (1969) Precise measurement of the muonic X rays in the lead isotopes. Phys Rev 187:1565–1596

    Article  Google Scholar 

  26. Kessler D, McKee RI, Hargrove CK, Hlncks EP, Anderson HL (1970) Muonic X rays and capture γ rays in 89Y. Can J Phys 48:3029

    Article  Google Scholar 

  27. Backenstoss G, Charalambus S, Darnel H, Hamdton WD, Lynen U, von der Malsburg C, Poelz G, Pove HP (1971) Nuclear γ-rays following muon capture. Nucl Phys A162:541

    Article  Google Scholar 

  28. Live Chart of Nuclides. [Online] IEAE. [Cited: September 14, 2019]. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  29. Fermi E, Teller E (1947) The capture of negative mesotrons in matter. Phys Rev 72:399

    Article  Google Scholar 

  30. Vasilyev VA, Petrukhin VI, Risin VE, Suvorov VM, Horváth D (1976) Dubna Report, vol JINR R1, p 10222

    Google Scholar 

  31. Schneuwly H, Pokrovsky VI, Ponomarev LI (1978) On coulomb capture ratios of negative mesons in chemical compounds. Nucl Phys A 312:419

    Article  Google Scholar 

  32. Daniel H (1979) Z Phys A 291:29

    Article  Google Scholar 

  33. von Egidy T, Jakubassa-Amundsen DH, Hartmann FJ (1982) Phys Rev A 29:455

    Article  Google Scholar 

  34. Ponting K, Butcher M (2015) The Metallurgy of Roman silver coinage: from the reform of Nero to the reform of Trajan. Cambridge University Press, Cambridge, UK, pp 100–129

    Google Scholar 

  35. Moreno-Suárez AI, Ager FJ, Scrivano S, Ortega-Feliu I, Gómez-Tubío B, Respaldiza MA (2015) First attempt to obtain the bulk composition of ancient silver–copper coins by using XRF and GRT. Nucl Instrum Methods Phys Res B 358:93–97

    Article  Google Scholar 

  36. Hampshire BV, Butcher K, Ishida K, Green G, Paul DM, Hillier AD (2019) Using negative muons as a probe for depth profiling silver Roman Coinage. 2:400–407

    Google Scholar 

  37. Ueda M, Taguchi I, Saito Y (1996) Non-destructive analysis of the fineness of Kobans in the Yedo period. 1996-E-26. Institute for Monetary and Economic Studies

    Google Scholar 

  38. Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo MK, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M (2014) A new X-ray fluorescence spectroscopyfor extraterrestrial materials using a muonbeam. Sci Rep 4:5072

    Article  Google Scholar 

  39. Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S (2017) Non-destructive elemental analysis of a carbonaceous chondrite with direct current Muon beam at MuSIC. Sci Rep 7:15478

    Article  Google Scholar 

  40. Reidy J, Hutson R, Daniel H, Springer K (1978) Use of muonic X rays for nondestructive analysis of bulk samples of low Z constituents. Anal Chem 50:40–44

    Article  Google Scholar 

  41. Reidy J, Hutson R, Springer K (1975) Use of muonic X-rays for tissue analysis. IEEE Trans Nucl Sci NS-22:1780–1783

    Article  Google Scholar 

  42. Goucher CL, Teilhet JH, Wilson KR, Chow T (1976) Lead isotope studies of metal source for ancient Nigerian ‘bronzes’. Nature 262:130–131

    Article  Google Scholar 

  43. Brill RH, Yamakaki K, Barnes IL, Rosman KJR, Diaz M (1979) Lead isotopes in some Japanese and Chinese glasses. Airs Orient 11:87–109

    Google Scholar 

  44. Ninomiya K, Kudo T, Strasser P, Terada K, Kawai Y, Tampo M, Miyake Y, Shinohara A, Kubo KM (2019) Development of non-destructive isotopic analysis methods using muon beams and their application to the analysis of lead. J Radioanal Nucl Chem 320:801–805

    Article  Google Scholar 

  45. Ninomiya K, Kubo MK, Strasser P, Shinohara A, Tampo M, Kawamura N, Miyake Y (2018) Isotope identification of lead by muon induced X-ray and gamma-ray measurements. JPS Conf Proc 21:011043

    Google Scholar 

  46. Hillier A, Ishida K, Seller P, Veale MC, Wilson MD (2018) Element specific imaging using muonic X-rays. JPS Conf Proc 21:011042

    Google Scholar 

  47. Yabu G, Katsuragawa M, Tampo M, Hamada K, Harayama A, Miyake Y, Oshita S, Saito S, Sato G, Takahashi T, Takeda S, Watanabe S (2018) Imaging of muonic X-ray of light elements with a CdTe double-sided strip detector. JPS Conf Ser 21:011044

    Google Scholar 

  48. JINR. Joint Institute for Nuclear Research (2019) Dzhelepov Laboratory of Nuclear Problems, Scientific Experimental Department of Nuclear Spectroscopy and Radiochemistry. Mu X-ray Catalogue. [Online]. [Cited: 9 29, 2019]. http://muxrays.**r.ru/

  49. Groom DE, Mokhov NV, Striganov S (2001) Muon stop** power and range tables. At Data Nucl Data Tables 76:1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian D. Hillier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hillier, A.D., Hampshire, B., Ishida, K. (2022). Depth-Dependent Bulk Elemental Analysis Using Negative Muons. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_3

Download citation

Publish with us

Policies and ethics

Navigation