System Biology Approach for Functional Analysis of Medicinal and Aromatic Plants

  • Chapter
  • First Online:
Medicinal and Aromatic Plants
  • 904 Accesses

Abstract

Plants often release some phytochemicals which are recognized as secondary metabolites and have pharmacological importance but are derived from natural plant extracts. These extracts can be obtained from plants by using traditional methods but with the recent advances in biotechnological avenues which help in the improvement of extraction method of these secondary metabolites to be used for commercial purpose at industrial level. This chapter gives brief information about the recent studies performed to identify and characterize active compounds in the medicinal and aromatic plants by the use of “omics” approach which further supports and helps to validate the claims made by traditional systems for the use of medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen RS, Millgate AG, Chitty JA et al (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22(12):1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Fernández-Pérez F, Pedreño MA (2015) Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20:2973–3000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Amini H, Naghavi MR, Shen T, Wang Y, Nasiri J, Khan LA, Fiehn O, Zerbe P, Maloof JN (2019) Tissue-specific transcriptome analysis reveals candidate genes for terpenoid and phenylpropanoid metabolism in the medicinal plant Ferula asafoetida. G3-Genes Genomes. Genetics 9(3):g3.200852

    Google Scholar 

  • Aslam J, Khan SH, Siddiqui ZH, Fatima Z, Maqsood M, Bhat MA, Nasim SA, iIlah A, Ahmad IZ, Khan SA, Mujib A, Sharma MP (2010) Catharanthus Roseus (l.) g. don. an important drug: it’s applications and production. Pharmacie Globale (IJCP) 4(12):1–16

    Google Scholar 

  • Assa Y, Shany S, Gestetner B, Tencer Y, Birk Y, Bondi A (1973) Interaction of alfalfa saponins with components of the erythrocyte membrane in hemolysis. Biochim Biophys Acta 307(1):83–91

    Article  CAS  PubMed  Google Scholar 

  • Beger RD, Sun J, Schnackenberg LK (2010) Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol 243:154–166

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics. Quantitative and physical map** of cellular proteins. Trends Biotechnol 17:121–127

    Article  CAS  PubMed  Google Scholar 

  • Campos NA, Paiva LV, Panis B, Carpentier SC (2016) The proteome profile of embryogenic cell suspensions of Coffea arabica L. Proteomics 16:1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Catarino MD, Silva AMS, Cruz MT, Cardoso SM (2017) Antioxidant and anti-inflammatory activities of Geranium robertianum L. decoctions. Food Funct 8(9):3355–3365. https://doi.org/10.1039/c7fo00881c

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthase in plants: a mid size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Chopra, Ananda S (2003) Ayurveda. In: Selin H (ed) Medicine across cultures: history and practice of medicine in non-western cultures. Kluwer Academic Publishers, Norwell, A, pp 75–83

    Chapter  Google Scholar 

  • Dai H, **ao C, Liu H, Hao F, Tang H (2010) Combined NMR and LC-DAD-MS analysis reveals comprehensive metabonomic variations for three phenotypic cultivars of Salvia miltiorrhiza Bunge. J Proteome Res 9:1565–1578

    Article  CAS  PubMed  Google Scholar 

  • Decker G, Wanner G, Zenk MH, Lottspeich F (2000) Characterization of proteins in latex of the opium poppy (Papaver somniferum) using two-dimensional gel electrophoresis and microsequencing. Electrophoresis 21(16):3500–3516

    Article  CAS  PubMed  Google Scholar 

  • Dos-Santos AL, Elbl P, Navarro BV, De Oliveira LF, Salvato F, Balbuena TS, Floh EI (2016) Quantitative proteomic analysis of Araucaria angustifolia (Bertol.) Kuntze cell lines with contrasting embryogenic potential. J Proteome 130:180–189

    Article  CAS  Google Scholar 

  • Evans WC (2009) Trease and Evans Pharmacognosy Saunders Elsevier, Edinburgh, London, New York, Philadelphia, St Louis, Sydney, Toronto, (16th Ed., 2009)

    Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiehn O (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  • Gavaghan CL, Wilson ID, Nicholson JK (2002) Physiological variation in metabolic phenoty** and functional genomic studies: use of orthogonal signal correction and PLS-DA. FEBS Lett 530:191–196

    Google Scholar 

  • Gonulalan EM, Nemutlu E, Bayazeid O, Koçak E, Yalçın FN, Omur Demirezer L (2019) Metabolomics and proteomics profiles of some medicinal plants and correlation with bdnf activity. Phytomedicine:152920. https://doi.org/10.1016/j.phymed.2019.152920

  • Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6:273–275

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Morris JS, Lee E et al (2015) Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:227. https://doi.org/10.1186/s12870-015-0596-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He Y, **ao H, Deng C et al (2016) The complete chloroplast genome sequences of the medicinal plant Pogostemon cablin. Int J Mol Sci 17:820e830

    Google Scholar 

  • Hoffmann D (2003) Medical herbalism : the science and practice of herbal medicine. Healing Arts Press, Rochester, Vermont

    Google Scholar 

  • Hou CC, Chen CH, Yang NS, Chen YP, Lo CP, Wang SY, Tien YJ, Tsai PW, Shyur LF (2010) Comparative metabolomics approach coupled with cell-and gene-based assays for species classification and anti-inflammatory bioactivity validation of Echinacea plants. J Nutr Biochem 21(11):1045–1059

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DI, Gaspari M, van der Greef J, van der Heijden R, Verpoorte R (2005) Proteome analysis of the medicinal plant Catharanthus roseus. Planta 221:690–704

    Article  CAS  PubMed  Google Scholar 

  • Jain C, Khatana S, Vijayvergia R (2019) Bioactivity of secondary metabolites of various plants: a review. Int J Pharm Sci Res 10(2):494–404

    CAS  Google Scholar 

  • Jepson RG, Craig JC (2008) Cranberries for preventing urinary tract infections. Cochrane Database Syst Rev:1, CD001321. https://doi.org/10.1002/14651858.CD001321

  • Kellner F, Kim J, Clavijo BJ et al (2015) Genome-guided investigation of plant natural product biosynthesis. Plant J 82(2015):680e692

    Google Scholar 

  • Kikuchi S, Bedard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M (2013) Uncovering the protein Translocon at the chloroplast inner envelope membrane. Science 339:571–574. https://doi.org/10.1126/science.1229262

    Article  CAS  PubMed  Google Scholar 

  • Kim SI, Kim JY, Kim EA, Kwon KH, Kim KW, Cho K, Lee JH, Nam MH, Yang DC, Yoo JS, Park YM (2003) Proteome analysis of hairy root from Panax ginseng C.A. Meyer using peptide fingerprinting, internal sequencing and expressed sequence tag data. Proteomics 3:2379–2392

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Roy NS, Lee I, Choi AY, Choi BS, Yu YS, Choi IY, Park KC, Kim S, Yang HS, Choi IK (2018) Genome-wide transcriptome profiling of the medicinal plant Zanthoxylum planispinum using a single-molecule direct RNA sequencing approach. Genomics. https://doi.org/10.1016/j.ygeno.2018.06.004

  • Krishnan NM, Pattnaik S, Deepak SA, Hariharan AH, Gaur P, Chaudhary R, Jain P, Vaidyanathan S, Krishna B, Panda B (2011) De novo sequencing and assembly of Azadirachta indica fruit transcriptome. Curr Sci (India) 101(12):1553–1561

    CAS  Google Scholar 

  • Krishnan NM, Pattnaik S, Jain P et al (2012) A draft of the genome and four transcriptomes of a medicinal and pesticidal angiosperm Azadirachta indica. BMC Genomics 13:464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan NM, Jain P, Gupta S, Hariharana AK, Panda B (2016) An improved genome assembly of Azadirachta indica A. Juss. G3 (Bethesda) 6(7):1835–1840

    Article  CAS  Google Scholar 

  • Li R, Reed DW, Liu E (2006) Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus Niger reveals a cytochrome P450 involved in littorine rearrangement. Chem Biol 13:513–520

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xu C, Lin X (2014) De novo assembly and characterization of the fruit transcriptome of Chinese Jujuba(Zizipus Jujuba Mill) using 454 pyrosequencing and the development of novel trinucleotide SSR markers. PLoS One 9(9):e106438. https://doi.org/10.1371/journal.pone.0106438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Li J, Liu S et al (2015) A comparative proteomic analysis of the buds and the young expanding leaves of the tea plant (Camellia sinensis L.). Int J Mol Sci 16(6):14007–14038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang Y, Zheng L, Zheng Y, Huang P, **ao X, Hao X, Chen Q, Hu Z, Li H, Wang X, Wang G (2019a) Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Front Plant Sci 10:1274. https://doi.org/10.3389/fpls.2019.01274

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Tan W, Sun J, Du J, Zheng C, Tian X, Zheng M, **ang B, Wang Y (2019b) Comparison of four complete chloroplast genomes of medicinal and ornamental Meconopsis species: genome organization and species discrimination. Sci Rep 9(1):10567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang C, Wang L, Lei J, Duan B, Ma W, **ao S, Qi H, Wang Z, Liu Y, Shen X, Qi H, Shuai, Wang Z, Liu Y, Shen X, Guo S, Hu H, Xu J, Chen S (2019) A comparative analysis of the chloroplast genomes of four Salvia medicinal plants. Engineering 5:907–915

    Article  CAS  Google Scholar 

  • Liscombe DK, OConnor SE (2011) A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus. Phytochemistry 72:1969–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Hu N, Wang B et al., (2011) A brief utilization report on the Illumina HiSeq 2000 sequencer. Mycology, 2(3): 169–191

    Google Scholar 

  • Liu MJ, Zhao J, Cai QL et al (2014) The complex jujube genome provides insights into fruit tree biology. Nat Commun 5:5315

    Article  CAS  PubMed  Google Scholar 

  • Lum JH, Fung KL, Cheung PY, Wong MS, Lee CH, Kwok FS, Leung MC, Hui PK, Lo SC (2002) Proteome of oriental ginseng Panax ginseng C.A. Meyer and the potential to use it as an identification tool. Proteomics 2:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Sun L, Chen X, Jiang R, Sun H, Zhao D (2013) Proteomic changes in different growth periods of ginseng roots. Plant Physiol Biochem 67:20–32

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Sun L, Chen X, Mei B, Chang G, Wang M, Zhao D (2016) Proteomic analyses provide novel insights into plant growth and ginsenoside biosynthesis in forest cultivated Panax ginseng (F. Ginseng). Front Plant Sci 7:1

    PubMed  PubMed Central  Google Scholar 

  • Moco S, Schneider B, Vervoort J (2009) Plant micrometabolomics: the analysis of endogenous metabolites present in a plant cell or tissue. J Proteome Res 8(4):1694–1703

    Article  CAS  PubMed  Google Scholar 

  • Montanher AB, Zucolotto SM, Schenkel EP, Fröde TS (2007) Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. J Ethnopharmacol 109(2):281–288

    Article  PubMed  Google Scholar 

  • Muneer S, Soundararajan P, Jeong BR (2016) Proteomic and antioxidant analysis elucidates the underlying mechanism of tolerance to hyperhydricity stress in vitro shoot cultures of Dianthus caryophyllus. J Plant Growth Regul 35:667–679

    Article  CAS  Google Scholar 

  • Muthappa SK, Anand A, Uppalapati SR, Mysore KS (2008) Virus-induced gene silencing and its applications. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 3:11

    Google Scholar 

  • Mwangi JW, Rode C, Colditz F, Haase C, Braun HP, Winkelmann T (2013) Proteomic and histological analyses of endosperm development in Cyclamen persicum as a basis for optimization of somatic embryogenesis. Plant Sci 201:52–65

    Article  PubMed  CAS  Google Scholar 

  • Najjaa H, Abdelkarim BA, Doria E, Boubakri A, Trabelsi N, Falleh H, Tlili H, Neffati M (2020) Phenolic composition of some Tunisian medicinal plants associated with anti-proliferative effect on human breast cancer MCF-7 cells. Eur Biotechnol J 4(2):104–112

    Google Scholar 

  • Nangong Z, He X, Huang F (2020) The complete chloroplast genome sequence of medicinal plant, Artemisia lavandulaefolia YC. Mitochondrial DNA Part B 5(2):1194–1195

    Article  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Puneet G, Aditi S, Vinayak K, Anant GN, Samir D Nikhil M (2013) Camellia sinensis (tea): Im plications and role in preventing dental decay. Pharmacogn Rev 7(14):152–156

    Article  CAS  Google Scholar 

  • Qian J, Song J, Gao H et al (2013) The complete chloroplast genome sequences of the medicinal plant Salvia miltiorrhiza. PLoS One 8:e57607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raharjo TJ, Widjaja I, Roytrakul S, Verpoorte R (2004) Comparative proteomics of Cannabis sativa plant tissues. J Biomol Tech 15:97–106

    PubMed  PubMed Central  Google Scholar 

  • Rastogi S, Meena S, Bhattacharya A et al (2014) De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. BMC Genomics 15:588

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastogi S, Kalra A, Gupta V, Khan F, Lal RK, Tripathi AK, Parameswaran S, Gopalakrishnan C, Ramaswamy G, Shasany AK (2015) Unravelling the genome of Holy basil: an “incomparable” “elixir of life” of traditional Indian medicine. BMC Genomics 16:413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rehman SU, Rizwan M, Khan S, Mehmood A, Munir A (2020) Proteomic analysis of medicinal plant Calotropis Gigantea by insilico peptide mass fingerprinting. Curr Comput Aided Drug Des. https://doi.org/10.2174/1573409916666200219114531

  • Roy NS, Kim JA, Choi AY et al (2018) RNA-Seq De Novo assembly and differential transcriptome analysis of Korean Medicinal Herb Cirsium japonicum var. spinossimum. Genomics Inform 16(4):e34

    Article  PubMed  PubMed Central  Google Scholar 

  • Salmela L, Rivals E (2014) LoRDEC: accurate and efficient long read error correction. Bioinformatics. 15;30(24):3506–3514

    Google Scholar 

  • Seigler DS (1995) Plant secondary metabolism. Springer Science: Business Media, New York. ISBN: 978-1-4613-7228-8

    Google Scholar 

  • Serafini M, Peluso I, Raguzzini A (2010) Flavonoids as anti-inflammatory agents. Proc Nutr Soc 69(3):273–278

    Article  CAS  PubMed  Google Scholar 

  • Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E (2012) Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Sci 10:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shyur LF, Yang NS (2008) Metabolomics for phytomedicine research and drug development. Curr Opin Chem Biol 12:66–71

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Xu J, Chen NZ, Li MF (2017) The complete chloroplast genome of traditional Chinese medical plants Paris polyphylla var. yunnanensis. Mitochondrial DNA Part A 28(2):159–160

    Article  CAS  Google Scholar 

  • Sud A, Chauhan RS, Tandon C (2014) Mass spectrometric analysis of differentially expressed proteins in an endangered medicinal herb, Picrorhiza kurroa. Biomed Res Int 2014:326405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tadeusz A (2015) Alkaloids: chemistry, biology, ecology, and applications, 2nd edn. Elsevier, Amsterdam. ISBN: 13: 978-0444594334

    Google Scholar 

  • Taleghani A, Emami SA, Tayarani-Najaran Z (2020) Artemisia: a promising plant for the treatment of cancer. Bioorg Med Chem 28:115180

    Article  CAS  PubMed  Google Scholar 

  • Thoppil RJ, Bishayee A (2011) Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. World J Hepatol 27 3(9):228–249

    Article  Google Scholar 

  • Wang W, Yu H, Wang J et al (2017) The complete chloroplast genome sequences of the medicinal plant Forsythia suspensa (Oleaceae). Int J Mol Sci 18(11):2288. https://doi.org/10.3390/ijms18112288

    Article  CAS  PubMed Central  Google Scholar 

  • Wang C, Peng D, Zhu J et al (2019) Transcriptome analysis of Polygonatum cyrtonema Hua: identification of genes involved in polysaccharide biosynthesis. Plant Methods 15:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wu Y, Zhao X, Zhang W (2015) The study on biological and pharmacological activity of coumarins. In: Asia-Pacific energy equipment engineering research conference, pp 135–138

    Google Scholar 

  • Yamazaki M, Mochida K, Asano T et al (2013) Coupling deep transcriptome analysis with untargeted metabolic profiling in Ophiorrhiza pumila to further the understanding of the biosynthesis of the anti-cancer alkaloid camptothecin and anthraquinones. Plant Cell Physiol 54(5):686–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Huang Y, An W, Zheng W, Huang S, Liang L (2019) Sequencing and structural analysis of the complete chloroplast genome of the medicinal plant Lycium chinense Mill. Plan Theory 8:87

    CAS  Google Scholar 

  • Zhang L, Zhu W, Zhang Y, Yang B, Fu Z, Li X, Tian J (2014) Proteomics analysis of Mahonia bealei leaves with induction of alkaloids via combinatorial peptide ligand libraries. J Proteome 110:59–71

    Article  CAS  Google Scholar 

  • Zhang Y, Zheng L, Zheng Y et al (2019) Assembly and annotation of a draft genome of the medicinal plant Polygonum cuspidatum. Front Plant Sci 10:1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Wang C (2020) Deep sequencing and transcriptome analyses to identify genes involved in iridoid biosynthesis in the medicinal plant Valeriana jatamansi Jones. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48(1):189–199

    Article  CAS  Google Scholar 

  • Zhaoa YF, Taoa AE, Li Y (2019) The complete chloroplast genome sequence of the medicinal plant Paris polyphylla (Melanthiaceae). Mitochondrial DNA Part B 4(2):3971–3972

    Article  Google Scholar 

  • Zhong F, Huang L, Qi L et al (2020) Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Mol Biol 102:477–499

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Pu T, Gui C, Zhang X, Gong L (2020) Transcriptome analysis reveals biosynthesis of important bioactive constituents and mechanism of stem formation of Dendrobium huoshanense. Sci Rep 10(1):2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bansal, M., Wani, S.H. (2021). System Biology Approach for Functional Analysis of Medicinal and Aromatic Plants. In: Aftab, T., Hakeem, K.R. (eds) Medicinal and Aromatic Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-58975-2_24

Download citation

Publish with us

Policies and ethics

Navigation