Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect

  • Chapter
  • First Online:
Plant Secondary Metabolites

Abstract

Nature is the immense source of chemical compounds or substances usually acknowledged as natural products. Plants are the considerable source of an inestimable diversity of natural products with manifold chemical structures and functionalities. These natural compounds have various healthcare benefits and are commonly termed as the primary metabolites (PPMs) and secondary metabolites (PSMs). Biogenically, there are basically four main classes of secondary metabolites: phenolics and polyphenolics, terpenes, nitrogen-containing alkaloids, and sulfur-containing compounds. The functional groups and other structural features present in a molecule are accountable for delivering a variety of characteristics including therapeutic applications and the solubility and stability of the molecules. The structural features of compounds useful to understand the relations between their molecular structures and biological or pharmacological activities are attributed to being responsible for arousing a target biological effect in the organism. This chapter will delineate the chemistry, classification, physicochemical properties, and numerous biological activities of plant secondary metabolites. In order to develop the new derivatives of therapeutic value, the present chapter would be useful for medicinal chemists to design and introduce new chemical groups into these biomedical compounds and to explore their biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agerbirk N, Olsen CE (2012) Glucosinolate structures in evolution. Phytochemistry 77:16–45

    CAS  PubMed  Google Scholar 

  • Ahuja I, Kissen R, Bones AM (2012) Phytoalexins in defense against pathogens. Trends Plant Sci 17(2):73–90

    CAS  PubMed  Google Scholar 

  • Alamgir ANM (2017) Medicinal, non-medicinal, biopesticides, color-and dye-yielding plants; secondary metabolites and drug principles; significance of medicinal plants; use of medicinal plants in the systems of traditional and complementary and alternative medicines (CAMs). In: Therapeutic use of medicinal plants and their extracts, vol 1. Springer, Cham, pp 61–104

    Google Scholar 

  • Al-Bayati FA, Sulaiman KD (2008) In vitro antimicrobial activity of Salvadora persica L. extracts against some isolated oral pathogens in Iraq. Turk J Biol 32(1):57–62

    Google Scholar 

  • Al-Juraifani AA (2011) Antimicrobial activity of some medicinal plants used in Saudi Arabia. Can J Pure Appl Sci 5(2):1509–1512

    Google Scholar 

  • Andrade LN, de Sousa DP (2015) Sesquiterpenes from essential oils and anti-inflammatory activity. Nat Prod Commun 10(10):1767–1774

    PubMed  Google Scholar 

  • Aniszewski T (2015) Alkaloid chemistry. In: Alkaloids chemistry, biology, ecology, and applications. Elsevier, pp 99–193

    Google Scholar 

  • Anwar N, Teo YK, Tan JBL (2019) The role of plant metabolites in drug discovery: current challenges and future perspectives. In: Natural bio-active compounds. Springer, Singapore, pp 25–51

    Google Scholar 

  • Apetrei C, Ghasemi-Varnamkhasti M, Apetrei IM (2016) Olive oil and combined electronic nose and tongue. In: Electronic noses and tongues in food science. Academic Press, pp 277–289

    Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517(7534):293–301

    CAS  PubMed  Google Scholar 

  • Atkinson RG (2016) Phenylpropenes: occurrence, distribution, and biosynthesis in fruit. J Agric Food Chem 66(10):2259–2272

    Google Scholar 

  • Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R (2015) Phytochemical constituents as future antidepressants: a comprehensive review. Rev Neurosci 26(6):699–719

    CAS  PubMed  Google Scholar 

  • Baser KHC, Demirci F (2007) Chemistry of essential oils. In: Berger RG (ed) Flavours and fragrances: chemistry, bioprocessing and sustainability. Springer, New York, pp 43–86

    Google Scholar 

  • Batra P, Sharma AK (2013) Anti-cancer potential of flavonoids: recent trends and future perspectives. 3Biotech 3(6):439–459

    Google Scholar 

  • Baur R, Städler E, Monde K, Takasugi M (1998) Phytoalexins from Brassica (Cruciferae) as oviposition stimulants for the cabbage root fly, Delia radicum. Chemoecology 8(4):163–168

    CAS  Google Scholar 

  • Bergman ME, Davis B, Phillips MA (2019) Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules 24(21):3961

    CAS  PubMed Central  Google Scholar 

  • Bernabeu E, Cagel M, Lagomarsino E, Moretton M, Chiappetta DA (2017) Paclitaxel: what has been done and the challenges remain ahead. Int J Pharm 526(1–2):474–495

    CAS  PubMed  Google Scholar 

  • Bienz S, Bisegger P, Guggisberg A, Hesse M (2005) Polyamine alkaloids. Nat Prod Rep 22(5):647–658

    CAS  PubMed  Google Scholar 

  • Biharee A, Sharma A, Kumar A, Jaitak V (2020) Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, p 104720

    Google Scholar 

  • Blazevic I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N (2020) Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169:112100

    CAS  PubMed  Google Scholar 

  • Bodoira R, Maestri D (2020) Phenolic compounds from nuts: extraction, chemical profiles, and bioactivity. J Agric Food Chem 68(4):927–942

    CAS  PubMed  Google Scholar 

  • Boncan DAT, Tsang SS, Li C, Lee IH, Lam HM, Chan TF, Hui JH (2020) Terpenes and terpenoids in plants: interactions with environment and insects. Int J Mol Sci 21(19):7382

    CAS  PubMed Central  Google Scholar 

  • Boniface PK, Ferreira EI (2019) Flavonoids as efficient scaffolds: recent trends for malaria, leishmaniasis, Chagas disease, and dengue. Phytother Res 33(10):2473–2517

    PubMed  Google Scholar 

  • Bottger A, Vothknecht U, Bolle C, Wolf A (2018) Plant secondary metabolites and their general function in plants. In: Lessons on caffeine, Cannabis & Co. Springer, Cham, pp 3–17

    Google Scholar 

  • Boufridi A, Quinn RJ (2018) Harnessing the properties of natural products. Annu Rev Pharmacol Toxicol 58:451–470

    CAS  PubMed  Google Scholar 

  • Chadwick M, Trewin H, Gawthrop F, Wagstaff C (2013) Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 14(6):12780–12805

    PubMed  PubMed Central  Google Scholar 

  • Chaouloff F (2000) Serotonin, stress and corticoids. J Psychopharmacol 14(2):139–151

    CAS  PubMed  Google Scholar 

  • Chatterjee SJ, Pandey S (2011) Chemo-resistant melanoma sensitized by tamoxifen to low dose curcumin treatment through induction of apoptosis and autophagy. Cancer Biol Ther 11(2):216–228

    CAS  PubMed  Google Scholar 

  • Cheuka PM, Mayoka G, Mutai P, Chibale K (2017) The role of natural products in drug discovery and development against neglected tropical diseases. Molecules 22(1):58

    Google Scholar 

  • Cheynier V (2012) Phenolic compounds: from plants to foods. Phytochem Rev 11(2–3):153–177

    CAS  Google Scholar 

  • Chien SC, Wu YC, Chen ZW, Yang WC (2015) Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. Evid Based Complement Alternat Med 2015:357357. https://doi.org/10.1155/2015/357357

    Article  PubMed  PubMed Central  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177(3):143–155

    CAS  Google Scholar 

  • Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O (2020) Phytochemicals in cancer treatment: from preclinical studies to clinical practice. Front Pharmacol 10:1614

    PubMed  PubMed Central  Google Scholar 

  • Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 19(8):876–877

    Google Scholar 

  • Corcoran MP, McKay DL, Blumberg JB (2012) Flavonoid basics: chemistry, sources, mechanisms of action, and safety. J Nutr Gerontol Geriatrics 31(3):176–189

    Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox-Georgian D, Ramadoss N, Dona C, Basu C (2019) Therapeutic and medicinal uses of terpenes. In: Medicinal plants. Springer, Cham, pp 333–359

    Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Plant secondary metabolites: occurrence, structure and role in the human diet, pp 1–24

    Google Scholar 

  • Darabpour E, Bavi AP, Motamedi H, Nejad SMS (2011) Antibacterial activity of different parts of Peganum harmala L. growing in Iran against multi-drug resistant bacteria. EXCLI J 10:252

    PubMed  PubMed Central  Google Scholar 

  • Dev S (1989) Terpenoids. In: Natural products of woody plants. Springer, Berlin, pp 691–807

    Google Scholar 

  • Eguchi R, Ono N, Morita AH, Katsuragi T, Nakamura S, Huang M, Altaf-Ul-Amin M, Kanaya S (2019) Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neural networks. BMC Bioinformatics 20(1):380

    PubMed  PubMed Central  Google Scholar 

  • El-Abhar HS, Schaalan MF (2014) Phytotherapy in diabetes: review on potential mechanistic perspectives. World J Diabetes 5(2):176

    PubMed  PubMed Central  Google Scholar 

  • Erb M, Kliebenstein DJ (2020) Plant secondary metabolites as defenses, regulators, and primary metabolites: the blurred functional trichotomy. Plant Physiol 184(1):39–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fridlender M, Kapulnik Y, Koltai H (2015) Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci 6:799

    PubMed  PubMed Central  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3(9):710–720

    CAS  PubMed  Google Scholar 

  • Ghorbani A, Esmaeilizadeh M (2017) Pharmacological properties of Salvia officinalis and its components. J Tradit Complement Med 7(4):433–440

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A (2013) Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 71(9):585–599

    PubMed  Google Scholar 

  • Gordaliza M (2007) Natural products as leads to anticancer drugs. Clin Transl Oncol 9(12):767–776

    CAS  PubMed  Google Scholar 

  • Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibiotics 9(4):170

    CAS  PubMed Central  Google Scholar 

  • Guggisberg A, Hesse M (2003) Alkaloids. In: Meyers RA (ed) Encyclopedia of physical science and technology, 3rd edn. Academic Press, pp 477–493., ISBN 9780122274107. https://doi.org/10.1016/B0-12-227410-5/00021-1

    Chapter  Google Scholar 

  • Guzman-Gutierrez SL, Gómez-Cansino R, García-Zebadúa JC, Jiménez-Pérez NC, Reyes-Chilpa R (2012) Antidepressant activity of Litsea glaucescens essential oil: identification of β-pinene and linalool as active principles. J Ethnopharmacol 143(2):673–679

    CAS  PubMed  Google Scholar 

  • Guzman-Gutierrez SL, Bonilla-Jaime H, Gómez-Cansino R, Reyes-Chilpa R (2015) Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci 128:24–29

    CAS  PubMed  Google Scholar 

  • Harborne JB (1984) The terpenoids. In: Phytochemical methods. Springer, Dordrecht, pp 100–141. https://doi.org/10.1007/978-94-009-5570-7_3

    Chapter  Google Scholar 

  • Harborne JB (1989) General procedures and measurement of total phenolics. Methods Plant Biochem 1:1–28

    CAS  Google Scholar 

  • Harman-Ware AE (2020) Conversion of terpenes to chemicals and related products. In: Chemical catalysts for biomass upgrading, pp 529–568

    Google Scholar 

  • Hayes M, Bleakley S (2018) Peptides from plants and their applications. In: Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, pp 603–622

    Google Scholar 

  • Hernandez-Rodríguez P, Baquero LP, Larrota HR (2019) Flavonoids: potential therapeutic agents by their antioxidant capacity. In: Bioactive compounds. Woodhead Publishing, pp 265–288

    Google Scholar 

  • Hewlings SJ, Kalman DS (2017) Curcumin: a review of its’ effects on human health. Foods 6(10):92

    PubMed Central  Google Scholar 

  • Ibanez S, Gallet C, Després L (2012) Plant insecticidal toxins in ecological networks. Toxins 4(4):228–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inouhe M (2005) Phytochelatins. Braz J Plant Physiol 17(1):65–78

    CAS  Google Scholar 

  • Isailovic N, Daigo K, Mantovani A, Selmi C (2015) Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun 60:1–11

    CAS  PubMed  Google Scholar 

  • Jablonsky M, Haz A, Sladkova A, Strizincova P, Skulcova A, Majova V, Jablonsky J (2019) Nutraceuticals as phenolic bioactive compounds analysis of softwood bark and their possibilities of industry applications. J Hygienic Eng Design 26:93–99

    Google Scholar 

  • Jerine Peter S, Sabina EP (2016) Global current trends in natural products for diabetes management: a review. Int J Pharm Sci 8:20–28

    Google Scholar 

  • Joullié MM, Richard DJ (2004) Cyclopeptide alkaloids: chemistry and biology. Chem Commun 18:2011–2015

    Google Scholar 

  • Khalifa AB (2004) Herbs: nature’s pharmacy, 1st edn. Arab Cultural Center, Casablanca, pp 286–288

    Google Scholar 

  • Khalil A (2012) Antimicrobial activity of ethanol leaf extracts of Catharanthus roseus from Saudi Arabia. In: 2nd International Conference on Environment Science and Biotechnology 48(2):6–11

    Google Scholar 

  • Kim T, Song B, Cho KS, Lee IS (2020) Therapeutic potential of volatile terpenes and terpenoids from forests for inflammatory diseases. Int J Mol Sci 21(6):2187

    CAS  PubMed Central  Google Scholar 

  • Klein-Júnior LC, Campos A, Niero R, Corrêa R, Vander Heyden Y, Filho VC (2020) Xanthones and cancer: from natural sources to mechanisms of action. Chem Biodiv 17(2):e1900499

    Google Scholar 

  • Koeduka T (2014) The phenylpropene synthase pathway and its applications in the engineering of volatile phenylpropanoids in plants. Plant Biotechnol 31(5):401–407

    CAS  Google Scholar 

  • Korkina L, Kostyuk V, Potapovich A, Mayer W, Talib N, De Luca C (2018) Secondary plant metabolites for sun protective cosmetics: from pre-selection to product formulation. Cosmetics 5(2):32

    Google Scholar 

  • Kumar N, Goel N (2019) Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep 24:e00370

    Google Scholar 

  • Kumar B, Kumar A (2016) Diabetes mellitus and its control by Ocimum sanctum extract in mice diabetic model. Int J Curr Microbiol App Sci 5:795–810

    Google Scholar 

  • Kumar BP, Soni M, Bhikhalal UB, Kakkot IR, Jagadeesh M, Bommu P, Nanjan MJ (2010) Analysis of physicochemical properties for drugs from nature. Med Chem Res 19(8):984–992

    Google Scholar 

  • Kumar N, Kumar S, Abbat S, Nikhil K, Sondhi SM, Bharatam PV, Roy P, Pruthi V (2016) Ferulic acid amide derivatives as anticancer and antioxidant agents: synthesis, thermal, biological and computational studies. Med Chem Res 25(6):1175–1192

    CAS  Google Scholar 

  • Kumar P, Rani S, Arunjyothi B, Chakrapani P, Rojarani A (2017) Evaluation of antidiabetic activity of Gymnema sylvestre and Andrographis paniculata in streptozotocin induced diabetic rats. Int J Pharmacogn Phytochem Res 9:22–25

    Google Scholar 

  • LaLonde RT (2005) Terpenes and terpenoids. In: Considine GD (ed) Van Nostrand’s encyclopedia of chemistry. https://doi.org/10.1002/0471740039.vec2473

    Chapter  Google Scholar 

  • Lea AJ, Tung J, Zhou X (2015) A flexible, efficient binomial mixed model for identifying differential DNA methylation in bisulfite sequencing data. PLoS Genet 11(11):e1005650

    PubMed  PubMed Central  Google Scholar 

  • Leavell MD, McPhee DJ, Paddon CJ (2016) Develo** fermentative terpenoid production for commercial usage. Curr Opin Biotechnol 37:114–119

    CAS  PubMed  Google Scholar 

  • Li C, Miao X, Li F, Adhikari BK, Liu Y, Sun J, Zhang R, Cai L, Liu Q, Wang Y (2019) Curcuminoids: implication for inflammation and oxidative stress in cardiovascular diseases. Phytother Res 33(5):1302–1317

    CAS  PubMed  Google Scholar 

  • Lin D, **ao M, Zhao J, Li Z, **ng B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10):1374

    PubMed Central  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    CAS  Google Scholar 

  • Liu K, Rossi PG, Ferrari B, Berti L, Casanova J, Tomi F (2007) Composition, irregular terpenoids, chemical variability and antibacterial activity of the essential oil from Santolina corsica Jordan et Fourr. Phytochemistry 68(12):1698–1705

    CAS  PubMed  Google Scholar 

  • Lyu X, Lee J, Chen WN (2019) Potential natural food preservatives and their sustainable production in yeast: terpenoids and polyphenols. J Agric Food Chem 67(16):4397–4417

    CAS  PubMed  Google Scholar 

  • Maaliki D, Shaito AA, Pintus G, El-Yazbi A, Eid AH (2019) Flavonoids in hypertension: a brief review of the underlying mechanisms. Curr Opin Pharmacol 45:57–65

    CAS  PubMed  Google Scholar 

  • Machado LR, Ottolini B (2015) An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol 6:115

    PubMed  PubMed Central  Google Scholar 

  • Malik EM, Müller CE (2016) Anthraquinones as pharmacological tools and drugs. Med Res Rev 36(4):705–748

    CAS  PubMed  Google Scholar 

  • Mason TL (1987) Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds. Phytochemistry 26(8):2197–2202

    CAS  Google Scholar 

  • Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins—an important class of phytochemicals. In: Phytochemicals-isolation, characterisation and role in human health, pp 113–140

    Google Scholar 

  • Mignani S, Rodrigues J, Tomas H, Jalal R, Singh PP, Majoral JP, Vishwakarma RA (2018) Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified? Drug Discov Today 23(3):605–615

    PubMed  Google Scholar 

  • Moller BL, Olsen CE, Motawia MS (2016) General and stereocontrolled approach to the chemical synthesis of naturally occurring cyanogenic glucosides. J Nat Prod 79(4):1198–1202

    PubMed  Google Scholar 

  • Muller WE, Singer A, Wonnemann M (2001) Hyperforin-antidepressant activity by a novel mechanism of action. Pharmacopsychiatry 34(Sup. 1):98–102

    Google Scholar 

  • Nagren K (2003) PET and knockout mice in drug discovery. Drug Discov Today 8(19):876–877

    PubMed  Google Scholar 

  • Nazhand A, Durazzo A, Lucarini M, Romano R, Mobilia MA, Izzo AA, Santini A (2020) Human health-related properties of chromones: an overview. Nat Prod Res 34(1):137–152

    CAS  PubMed  Google Scholar 

  • Negi JS, Bisht VK, Singh P, Rawat MSM, Joshi GP (2013) Naturally occurring xanthones: chemistry and biology. J Appl Chem 2013(1):1–9

    Google Scholar 

  • Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    CAS  PubMed  Google Scholar 

  • Ntalli N, Koliopoulos G, Giatropoulos A, Menkissoglu-Spiroudi U (2019) Plant secondary metabolites against arthropods of medical importance. Phytochem Rev 18(5):1255–1275

    CAS  Google Scholar 

  • O’Connor SE (2010) 1.25-Alkaloids. In: Comprehensive natural products II, vol 1, pp 977–1007

    Google Scholar 

  • Odintsova TI, Slezina MP, Istomina EA (2018) Plant thionins: structure, biological functions and potential use in biotechnology. Vavilovskii Zhurnal Genetiki I Selektsii 22(6):667–675

    Google Scholar 

  • Othman L, Sleiman A, Abdel-Massih RM (2019) Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 10:911

    PubMed  PubMed Central  Google Scholar 

  • Pedraza-Alva G, Pérez-Martínez L, Valdez-Hernández L, Meza-Sosa KF, Ando-Kuri M (2015) Negative regulation of the inflammasome: kee** inflammation under control. Immunol Rev 265(1):231–257

    CAS  PubMed  Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. Molecules 2009(14):2202–2211. https://doi.org/10.3390/molecules14062202

    Article  CAS  Google Scholar 

  • Quinn RJ, Carroll AR, Pham NB, Baron P, Palframan ME, Suraweera L, Pierens GK, Muresan S (2008) Develo** a drug-like natural product library. J Nat Prod 71(3):464–468

    CAS  PubMed  Google Scholar 

  • Rattan RS (2010) Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot 29(9):913–920

    CAS  Google Scholar 

  • Reinisalo M, Karlund A, Koskela A, Kaarniranta K, Karjalainen RO (2015) Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative Med Cell Longev 2015:340520. https://doi.org/10.1155/2015/340520

    Article  Google Scholar 

  • Rengasamy KR, Khan H, Gowrishankar S, Lagoa RJ, Mahomoodally FM, Khan Z, Suroowan S, Tewari D, Zengin G, Hassan ST, Pandian SK (2019) The role of flavonoids in autoimmune diseases: therapeutic updates. Pharmacol Ther 194:107–131

    CAS  PubMed  Google Scholar 

  • Rentzsch M, Wilkens A, Winterhalter P (2009) Non-flavonoid phenolic compounds. In: Wine chemistry and biochemistry. Springer, New York, pp 509–527

    Google Scholar 

  • Ruszkowska J, Wróbel JT (2003) Tryptophan-derived sulfur-containing phytoalexins—a general overview. In: Developments in tryptophan and serotonin metabolism. Springer, Boston, MA, pp 629–636

    Google Scholar 

  • Saeed A (2016) Isocoumarins, miraculous natural products blessed with diverse pharmacological activities. Eur J Med Chem 116:290–317

    CAS  PubMed  Google Scholar 

  • Saghyan AS, Langer P (2016) Non-proteinogenic α-amino acids, natural origin, biological functions. In: Saghyan AS, Langer P (eds) Asymmetric synthesis of non-proteinogenic amino acids. https://doi.org/10.1002/9783527804498.ch1

    Chapter  Google Scholar 

  • Saki K, Bahmani M, Rafieian-Kopaei M (2014) The effect of most important medicinal plants on two importnt psychiatric disorders (anxiety and depression)-a review. Asian Pac J Trop Med 1(7):S34–S42

    Google Scholar 

  • Sato F (2014) Plant secondary metabolism. In: eLS. Wiley. https://doi.org/10.1002/9780470015902.a0001812.pub2

    Chapter  Google Scholar 

  • Schmidt U, Lieberknecht A, Haslinger E (1985) Peptide alkaloids. In: The alkaloids: chemistry and pharmacology, vol 26. Academic Press, pp 299–326

    Google Scholar 

  • Seca AM, Pinto DC (2018) Plant secondary metabolites as anticancer agents: successes in clinical trials and therapeutic application. Int J Mol Sci 19(1):263

    PubMed Central  Google Scholar 

  • Sell CS (2007) A fragrant introduction to terpenoid chemistry. R Soc Chem. https://doi.org/10.1039/9781847550019

  • Semwal RB, Semwal DK, Combrinck S et al (2020) Health benefits of chromones: common ingredients of our daily diet. Phytochem Rev 19:761–785. https://doi.org/10.1007/s11101-020-09681-w

    Article  CAS  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. J Funct Foods 18:820–897

    CAS  Google Scholar 

  • Sharma A, Sharma P, Tuli HS, Sharma AK (2018) Phytochemical and pharmacological properties of flavonols. In: eLS, pp 1–12

    Google Scholar 

  • Sharma A, Tuli HS, Sharma AK (2019) Chemistry and synthetic overview of flavonoids. In: Current aspects of flavonoids: their role in cancer treatment. Springer, Singapore, pp 23–38

    Google Scholar 

  • Shehadi M, Awada F, Oleik R, Chokr A, Hamze K, Abou Hamdan H, HARB A, KOBAISSI A (2014) Comparative analysis of the anti-bacterial activity of four plant extracts. Int J Curr Res Aca Rev 2(6):83–94

    CAS  Google Scholar 

  • Stevenson DE, Hurst RD (2007) Polyphenolic phytochemicals–just antioxidants or much more? Cell Mol Life Sci 64(22):2900–2916

    CAS  PubMed  Google Scholar 

  • Takshak S, Agrawal SB (2019) Defense potential of secondary metabolites in medicinal plants under UV-B stress. J Photochem Photobiol B Biol 193:51–88

    CAS  Google Scholar 

  • Teponno RB, Kusari S, Spiteller M (2016) Recent advances in research on lignans and neolignans. Nat Prod Rep 33(9):1044–1092

    CAS  PubMed  Google Scholar 

  • Thangapazham RL, Sharad S, Maheshwari RK (2013) Skin regenerative potentials of curcumin. Biofactors 39(1):141–149

    CAS  PubMed  Google Scholar 

  • Turner JV, Agatonovic-Kustrin S (2007) In silico prediction of oral bioavailability. In: Comprehensive medicinal chemistry II ADME Tox approaches. Elsevier Ltd, pp 699–724

    Google Scholar 

  • Uddin SN, Akond MA, Mubassara S, Yesmin MN (2008) Antioxidant and antibacterial activities of Trema cannabina. Middle East J Sci Res 3(2):105–108

    Google Scholar 

  • Uddin M, Kabir M, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L (2020) Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules 25(6):1267

    CAS  PubMed Central  Google Scholar 

  • Van Sumere CF (1989) Phenols and phenolic acids. In: Methods in plant biochemistry, vol 1. Academic Press, pp 29–73

    Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    CAS  PubMed  Google Scholar 

  • Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CO, Robles-Sánchez M, Astiazaran-García H, Alvarez-Parrilla E, González-Aguilar GA (2014) Phenolic compounds: their journey after intake. Food Funct 5(2):189–197

    PubMed  Google Scholar 

  • Velu G, Palanichamy V, Rajan AP (2018) Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. In: Bioorganic phase in natural food: an overview. Springer, Cham, pp 135–156

    Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38(1):11–36

    CAS  PubMed  Google Scholar 

  • Wang S, Alseekh S, Fernie AR, Luo J (2019) The structure and function of major plant metabolite modifications. Mol Plant 12(7):899–919

    CAS  PubMed  Google Scholar 

  • Ward RS (2000) Recent advances in the chemistry of lignans. In: Studies in natural products chemistry, vol 24. Elsevier, pp 739–798

    Google Scholar 

  • Wellington KW (2015) Understanding cancer and the anticancer activities of naphthoquinones—a review. RSC Adv 5(26):20309–20338

    CAS  Google Scholar 

  • Wink M (2016) Role in plant diversification of the secondary metabolites. In: Encyclopedia of evolutionary biology, pp 1–9

    Google Scholar 

  • Xu R, Fazio GC, Matsuda SP (2004) On the origins of triterpenoid skeletal diversity. Phytochemistry 65(3):261–291

    CAS  PubMed  Google Scholar 

  • Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X (2020) Advances in pharmacological activities of terpenoids. Nat Prod Commun 15(3):1934578X20903555

    CAS  Google Scholar 

  • Yerer MB, Dayan S, Han MI, Sharma A, Tuli HS, Sak K (2020) Nanoformulations of coumarins and the hybrid molecules of coumarins with anticancer effects. Anti Cancer Agents Med Chem 20(15):1797–1816. https://doi.org/10.2174/1871520620666200310094646

    Article  CAS  Google Scholar 

  • Yoshida K, Oyama KI, Kondo T (2012) Chemistry of flavonoids in color development. Recent Adv Polyphenol Res 3:99–129

    CAS  Google Scholar 

  • Young RJ (2014) Physical properties in drug design. Top Med Chem 9:1–68

    Google Scholar 

  • Zeng T, Liu Z, Liu H, He W, Tang X, **e L, Wu R (2019) Exploring chemical and biological space of terpenoids. J Chem Inf Model 59(9):3667–3678

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Sharma, S., Kumar, A., Kumar, V., Sharma, A.K. (2022). Plant Secondary Metabolites: An Introduction of Their Chemistry and Biological Significance with Physicochemical Aspect. In: Sharma, A.K., Sharma, A. (eds) Plant Secondary Metabolites. Springer, Singapore. https://doi.org/10.1007/978-981-16-4779-6_1

Download citation

Publish with us

Policies and ethics

Navigation