Testing the Agreement of Trees with Internal Labels

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12304))

Included in the following conference series:

Abstract

The input to the agreement problem is a collection \(\mathcal {P}= \{\mathcal {T}_1, \mathcal {T}_2, \dots , \mathcal {T}_k\}\) of phylogenetic trees, called input trees, over partially overlap** sets of taxa. The question is whether there exists a tree \(\mathcal {T}\), called an agreement tree, whose taxon set is the union of the taxon sets of the input trees, such that for each \(i \in \{1, 2, \dots , k\}\), the restriction of \(\mathcal {T}\) to the taxon set of \(\mathcal {T}_i\) is isomorphic to \(\mathcal {T}_i\). We give a \(\mathcal {O}(n k (\sum _{i \in [k]} d_i + \log ^2(nk)))\) algorithm for a generalization of the agreement problem in which the input trees may have internal labels, where n is the total number of distinct taxa in \(\mathcal {P}\), k is the number of trees in \(\mathcal {P}\), and \(d_i\) is the maximum number of children of a node in \(\mathcal {T}_i\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These authors refer to what we term “agreement” as “compatibility”. What we call “compatibility”, they call “weak compatibility”.

References

  1. Aho, A., Sagiv, Y., Szymanski, T., Ullman, J.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  Google Scholar 

  2. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

    Article  Google Scholar 

  3. Berry, V., Semple, C.: Fast computation of supertrees for compatible phylogenies with nested taxa. Syst. Biol. 55(2), 270–288 (2006)

    Article  Google Scholar 

  4. Bininda-Emonds, O.R.P. (ed.): Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Series on Computational Biology, vol. 4. Springer, Berlin (2004). https://doi.org/10.1007/978-1-4020-2330-9

    Book  Google Scholar 

  5. Bordewich, M., Evans, G., Semple, C.: Extending the limits of supertree methods. Ann. Comb. 10, 31–51 (2006)

    Article  Google Scholar 

  6. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT. Theoret. Comput. Sci. 351, 296–302 (2006)

    Article  Google Scholar 

  7. Daniel, P., Semple, C.: Supertree algorithms for nested taxa. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic supertrees: combining information to reveal the tree of life, pp. 151–171. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  8. Deng, Y., Fernández-Baca, D.: An efficient algorithm for testing the compatibility of phylogenies with nested taxa. Algorithms Mol. Biol. 12, 7 (2017)

    Article  Google Scholar 

  9. Deng, Y., Fernández-Baca, D.: Fast compatibility testing for rooted phylogenetic trees. Algorithmica 80(8), 2453–2477 (2018). https://doi.org/10.1007/s00453-017-0330-4. http://rdcu.be/thB1

    Article  Google Scholar 

  10. Fernández-Baca, D., Guillemot, S., Shutters, B., Vakati, S.: Fixed-parameter algorithms for finding agreement supertrees. SIAM J. Comput. 44(2), 384–410 (2015)

    Article  Google Scholar 

  11. Fernández-Baca, D., Liu, L.: Tree compatibility, incomplete directed perfect phylogeny, and dynamic graph connectivity: an experimental study. Algorithms 12(3), 53 (2019)

    Article  Google Scholar 

  12. Hinchliff, C.E., et al.: Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Nat. Acad. Sci. 112(41), 12764–12769 (2015). https://doi.org/10.1073/pnas.1423041112

    Article  CAS  PubMed  Google Scholar 

  13. Jansson, J., Lingas, A., Rajaby, R., Sung, W.-K.: Determining the consistency of resolved triplets and fan triplets. In: Sahinalp, S.C. (ed.) RECOMB 2017. LNCS, vol. 10229, pp. 82–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56970-3_6

    Chapter  Google Scholar 

  14. Liu, L., Fernández-Baca, D.: Testing the agreement of trees with internal labels, February 2020. ar**v preprint https://arxiv.org/abs/2002.09725

  15. Maddison, W.P.: Reconstructing character evolution on polytomous cladograms. Cladistics 5, 365–377 (1989)

    Article  Google Scholar 

  16. Ng, M., Wormald, N.: Reconstruction of rooted trees from subtrees. Discrete Appl. Math. 69(1–2), 19–31 (1996)

    Article  Google Scholar 

  17. Page, R.M.: Taxonomy, supertrees, and the tree of life. In: Bininda-Emonds, O.R.P. (ed.) Phylogenetic supertrees: Combining Information to Reveal the Tree of Life, pp. 247–265. Kluwer, Dordrecht (2004)

    Chapter  Google Scholar 

  18. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol. 1, 53–58 (1992)

    Article  CAS  Google Scholar 

  19. Redelings, B.D., Holder, M.T.: A supertree pipeline for summarizing phylogenetic and taxonomic information for millions of species. Peer J. 5, e3058 (2017). https://doi.org/10.7717/peerj.3058

    Article  PubMed  Google Scholar 

  20. Sanderson, M.J.: Phylogenetic signal in the eukaryotic tree of life. Science 321(5885), 121–123 (2008)

    Article  CAS  Google Scholar 

  21. Sayers, E.W., et al.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 37(Database issue), D5–D15 (2009)

    Article  CAS  Google Scholar 

  22. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics. Oxford University Press, Oxford (2003)

    Google Scholar 

  23. The Angiosperm Phylogeny Group: An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016)

    Article  Google Scholar 

  24. Warnow, T.: Supertree construction: opportunities and challenges. Technical report ar**v:1805.03530 Ar**V, May 2018

  25. Wulff-Nilsen, C.: Faster deterministic fully-dynamic graph connectivity. In: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms SODA 2013, pp. 1757–1769. Society for Industrial and Applied Mathematics, Philadelphia (2013). http://dl.acm.org/citation.cfm?id=2627817.2627943

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fernández-Baca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernández-Baca, D., Liu, L. (2020). Testing the Agreement of Trees with Internal Labels. In: Cai, Z., Mandoiu, I., Narasimhan, G., Skums, P., Guo, X. (eds) Bioinformatics Research and Applications. ISBRA 2020. Lecture Notes in Computer Science(), vol 12304. Springer, Cham. https://doi.org/10.1007/978-3-030-57821-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57821-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57820-6

  • Online ISBN: 978-3-030-57821-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation