Log in

Fast Compatibility Testing for Rooted Phylogenetic Trees

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present a new graph-based approach to the following basic problem in phylogenetic tree construction. Let \(\mathcal {P}= \{T_1, \ldots , T_k\}\) be a collection of rooted phylogenetic trees over various subsets of a set of species. The tree compatibility problem asks whether there is a phylogenetic tree T with the following property: for each \(i \in \{1, \dots , k\}\), \(T_i\) can be obtained from the restriction of T to the species set of \(T_i\) by contracting zero or more edges. If such a tree T exists, we say that \(\mathcal {P}\) is compatible and that T displays \(\mathcal {P}\). Our approach leads to a \(O(M_\mathcal {P}\log ^2 M_\mathcal {P})\) algorithm for the tree compatibility problem, where \(M_\mathcal {P}\) is the total number of nodes and edges in \(\mathcal {P}\). Our algorithm either returns a tree that displays \(\mathcal {P}\) or reports that \(\mathcal {P}\) is incompatible. Unlike previous algorithms, the running time of our method does not depend on the degrees of the nodes in the input trees. Thus, our algorithm is equally fast on highly resolved and highly unresolved trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The name of our algorithm is intended to reflect its connection with \(\textsc {Build}\)–the “ST” stands for “supertree”.

References

  1. Aho, A.V., Sagiv, Y., Szymanski, T.G., Ullman, J.D.: Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. SIAM J. Comput. 10(3), 405–421 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baum, B.R.: Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41, 3–10 (1992)

    Article  Google Scholar 

  3. Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L., Purvis, A.: The delayed rise of present-day mammals. Nature 446, 507–512 (2007)

    Article  Google Scholar 

  4. Bryant, D., Lagergren, J.: Compatibility of unrooted phylogenetic trees is FPT. Theor. Comput. Sci. 351, 296–302 (2006)

    Article  MATH  Google Scholar 

  5. Buneman, P.: A characterisation of rigid circuit graphs. Discrete Math. 9, 205–212 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, Y., Fernández-Baca, D.: Fast compatibility testing for phylogenies with nested taxa. In: Frith, M.C., Pedersen, C.N.S. (eds.) Algorithms in Bioinformatics. In: 16th International Workshop, WABI 2016, Aarhus, Denmark, Aug 22–24, 2016. Proceedings, volume 9838 of Lecture Notes in Computer Science, pp. 90–101. Springer (2016)

  9. Deng, Y., Fernández-Baca, D.: Fast compatibility testing for rooted phylogenetic trees. In: Grossi, R., Lewenstein, M. (eds.) Proceedings of 27th Annual Symposium on Combinatorial Pattern Matching, volume 54 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 12:1–12:12, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik

  10. Even, S., Shiloach, Y.: An on-line edge-deletion problem. J. ACM 28(1), 1–4 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Grünewald, S., Steel, M., Swenson, M.S.: Closure operations in phylogenetics. Math. Biosci. 208, 521–537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Henzinger, M.R., King, V., Warnow, T.: Constructing a tree from homeomorphic subtrees, with applications to computational evolutionary biology. Algorithmica 24, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hinchliff, C.E., Smith, S.A., Allman, J.F., Burleigh, J.G., Chaudhary, R., Coghill, L.M., Crandall, K.A., Deng, J., Drew, B.T., Gazis, R., Gude, K., Hibbett, D.S., Katz, L.A., Laughinghouse IV, H.D., McTavish, E.J., Midford, P.E., Owen, C.L., Reed, R.H., Reesk, J.A., Soltis, D.E., Williams, T., Cranston, K.A.: Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. 112(41), 12764–12769 (2015)

    Article  Google Scholar 

  14. Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iyer, R., Karger, D., Rahul, H., Thorup, M.: An experimental study of polylogarithmic, fully dynamic, connectivity algorithms. J. Exp. Algorithmics 6, 4 (2001)

    Article  MATH  Google Scholar 

  16. Jansson, J., Shen, C., Sung, W.: Improved algorithms for constructing consensus trees. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, pp. 1800–1813. New Orleans, Louisiana, USA, Jan 6–8, 2013

  17. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Comput. 33(3), 590–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ragan, M.A.: Phylogenetic inference based on matrix representation of trees. Mol. Phylogenet. Evol. 1, 53–58 (1992)

    Article  Google Scholar 

  19. Sanderson, M.J.: Phylogenetic signal in the eukaryotic tree of life. Science 321(5885), 121–123 (2008)

    Article  Google Scholar 

  20. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  21. Steel, M.A.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 343–350. ACM (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Fernández-Baca.

Additional information

A preliminary version of this paper appeared in the proceedings of the 27th Annual Symposium on Combinatorial Pattern Matching, Tel Aviv, Israel, June 27–29, 2016 [9]. Yun Deng: Supported in part by the National Science Foundation under Grant CCF-1422134. David Fernández-Baca: Supported in part by the National Science Foundation under Grants CCF-1017189 and CCF-1422134.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Fernández-Baca, D. Fast Compatibility Testing for Rooted Phylogenetic Trees. Algorithmica 80, 2453–2477 (2018). https://doi.org/10.1007/s00453-017-0330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0330-4

Keywords

Navigation