Spring Phenology of the Boreal Ecosystems

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems

Abstract

Ecosystem phenology, i.e., the timing of key biological events, is often considered as both a witness and an actor of climate change. Phenological interannual variations and decadal changes reflect climate variability and trends. Deciduous plant phenology also directly influences the carbon, water, and energy exchanges of the ecosystem with the atmosphere. In the northern forests, a trend to earlier spring has been widely reported, often based on remote sensing methods. This trend is suggested to explain a part of the residual carbon sink. However methodological issues, especially related to the combined effects of the vegetation and of the snow cover seasonal changes on the remote sensing signal, were found to affect the results. This chapter describes a remote sensing green-up retrieval method designed to avoid signal contamination by snow. The result validation with ground observations showed that the method catches the interannual variations in phenology of the plant community. Changes in the 1998–2017 period are analyzed and positioned in a longer term. This shows that the most persistent feature over the last decades is a large-scale shift in the green-up date at the end of the 1980s, and that the green-up date has not recovered yet to its status prior to 1987. Finally the green-up date maps were used to represent phenology in the northern ecosystem carbon budget simulations. No unidirectional effect of phenological changes in the annual carbon balance could be identified because of a complex interplay between vegetation, water resources and climate.

This chapter is dedicated to the memory of Rikie Suzuki.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Badeck F-W, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162:295–309

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L et al (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteor Soc 82:2415–2434

    Article  Google Scholar 

  • Bartholomé E, Belward AS (2005) GLC2000: A new approach to global land cover map** from earth observation data. Int J Remote Sens 26:1959–1977

    Article  Google Scholar 

  • Beaubien EG, Hamann A (2011a) Plant phenology networks of citizen scientists: recommendations from two decades of experience in Canada. Int J Biometeorol 55:833–841

    Article  Google Scholar 

  • Beaubien E, Hamann A (2011b) Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada. Bioscience 61:514–524

    Article  Google Scholar 

  • Beck PSA, Atzberger C, Høgda KA, Johansen B, Skidmore AK (2006) Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sens Environ 100:321–334

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Bo**ski S, Verstraete M, Peterson TC, Richter C, Simmons A, Zemp M (2014) the concept of essential climate variables in support of climate research, applications, and policy. Bull Am Meteor Soc 95:1431–1443

    Article  Google Scholar 

  • Both C, Van Asch M, Bijlsma RG, Van Den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83

    Article  Google Scholar 

  • Buermann JL (2016) Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences 13:1597–1607

    Article  Google Scholar 

  • Buermann M (2013) Earlier springs decrease peak summer productivity in North American boreal forests. Environ Res Lett 8

    Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philosophical Transactions of the Royal Society B: Biological Sciences 365:3149–3160

    Article  Google Scholar 

  • Colombo UM (2011) Phenological monitoring of grassland and larch in the Alps from Terra and Aqua MODIS images. Italian J Remote Sens/Rivista Italiana di Telerilevamento 43:83–96

    Google Scholar 

  • Dantec-Nédélec S (2017) Evaluation multi-échelle des bilans d’énergie et d’eau du modèle ORCHIDEE sur la Sibérie et leur réponse à l’évolution du climat. Paris Saclay

    Google Scholar 

  • Delbart N, Beaubien E, Kergoat L, Le Toan T (2015) Comparing land surface phenology with leafing and flowering observations from the PlantWatch citizen network. Remote Sens Environ 160:273–280

    Article  Google Scholar 

  • Delbart N, Kergoat L, Le Toan T, Lhermitte J, Picard G (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sens Environ 97:26–38

    Article  Google Scholar 

  • Delbart N, Le Toan T, Kergoat L, Fedotova V (2006) Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982–2004). Remote Sens Environ 101:52–62

    Article  Google Scholar 

  • Delbart N, Picard G (2007) Modeling the date of leaf appearance in low-arctic tundra. Glob Change Biol 13:2551–2562

    Article  Google Scholar 

  • Delbart N, Picard G, Le Toan T, Kergoat L, Quegan S, Woodward I, Dye D, Fedotova V (2008) Spring phenology in boreal Eurasia over a nearly century time scale. Glob Change Biol 14:603–614

    Article  Google Scholar 

  • Dethier BE, Ashley MD, Blair BO, Caprio JM, Hopp RJ, Rouse Jr, J (1973) Phenology satellite experiment.[detection of brown wave and green wave in north-south corridors of United States]

    Google Scholar 

  • Duchemin B, Goubier J, Courrier G (1999) Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sens Environ 67:68–82

    Article  Google Scholar 

  • Dunn AH, de Beurs KM (2011) Land surface phenology of North American mountain environments using moderate resolution imaging spectroradiometer data. Remote Sens Environ 115:1220–1233

    Article  Google Scholar 

  • Dye DG, Tucker CJ (2003) Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys Res Lett 30:1–58

    Article  Google Scholar 

  • Forkel M, Carvalhais N, Rödenbeck C, Keeling R, Heimann M, Thonicke K, Zaehle S, Reichstein M (2016) Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems. Science 351:696–699

    Article  Google Scholar 

  • Gonsamo A, Chen JM (2016) Circumpolar vegetation dynamics product for global change study. Remote Sens Environ 182:13–26

    Article  Google Scholar 

  • Gonsamo C (2013) Citizen science: linking the recent rapid advances of plant flowering in Canada with climate variability. Sci Rep 3

    Google Scholar 

  • Goulden ML, Wofsy SC, Harden JW, Trumbore SE, Crill PM, Gower ST, Fries T, Daube BC, Fan S-M, Sutton DJ, Bazzaz A, Munger JW (1998) Sensitivity of boreal forest carbon balance to soil thaw. Science 279:214–217

    Article  Google Scholar 

  • Graven HD, Keeling RF, Piper SC, Patra PK, Stephens BB, Wofsy SC, Welp LR, Sweeney C, Tans PP, Kelley JJ, Daube BC, Kort EA, Santoni GW, Bent JD (2013) Enhanced Seasonal Exchange of CO2 by Northern Ecosystems Since 1960. Science 341:1085–1089

    Article  Google Scholar 

  • Grippa M, Mognard N, Le Toan T (2005) Comparison between the interannual variability of snow parameters derived from SSM/I and the Ob river discharge. Remote Sens Environ 98:35–44

    Article  Google Scholar 

  • Guan S-J (2014) Deriving vegetation phenological time and trajectory information over africa using seviri daily LAI. IEEE Trans Geosci Remote Sens 52:1113–1130

    Article  Google Scholar 

  • Guimberteau M, Zhu D, Maignan F, Huang Y, Chao Y, Dantec-Nédélec S, Ottlé C, Jornet-Puig A, Bastos A, Laurent P (2018) ORCHIDEE-MICT (v8. 4.1), a land surface model for the high latitudes: model description and validation. Geosci Model Develop 11:121

    Google Scholar 

  • Guyon J-P (2011) Monitoring elevation variations in leaf phenology of deciduous broadleaf forests from SPOT/VEGETATION time-series. Remote Sens Environ 115:615–627

    Article  Google Scholar 

  • Hakkinen R, Linkosalo T, Hari P (1995) Methods for combination phenological time series: Application to bud burst in birch (Betula pendula) in central Finland for the period 1896–1955. Tree Physiol 15:721–726

    Article  Google Scholar 

  • Helman D (2018) Land surface phenology: What do we really “see” from space? Sci Total Environ 618:665–673

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR et al (2005) Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim Change 72:251–298

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: The physical science basis. contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • James ME, Kalluri SNV (1994) The pathfinder AVHRR land data set: an improved coarse resolution data set for terrestrial monitoring. Int J Remote Sens 15:3347–3363

    Article  Google Scholar 

  • ** H, Eklundh L (2014) A physically based vegetation index for improved monitoring of plant phenology. Remote Sens Environ 152:512–525

    Article  Google Scholar 

  • ** H, Jönsson AM, Bolmgren K, Langvall O, Eklundh L (2017) Disentangling remotely-sensed plant phenology and snow seasonality at northern Europe using MODIS and the plant phenology index. Remote Sens Environ 198:203–212

    Article  Google Scholar 

  • Justice BO, Holben BN, Gwynne MD (1986) Monitoring east african vegetation using AVHRR data. Int J Remote Sens 7:1453–1474

    Article  Google Scholar 

  • Justice CO, Townshend JRG, Holben AN, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int J Remote Sens 6:1271–1318

    Article  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  Google Scholar 

  • Keenan AD (2015) The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob Change Biol 21:2634–2641

    Article  Google Scholar 

  • Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474

    Article  Google Scholar 

  • Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:1–33

    Article  Google Scholar 

  • Le Quéré C, Peters GP, Andres RJ et al (2014) Global carbon budget 2013. Earth Syst Sci Data 6:235–263

    Article  Google Scholar 

  • Liang L, Schwartz MD, Fei S (2011) Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens Environ 115:143–157

    Article  Google Scholar 

  • Liu Q, Fu YH, Zhu Z, Liu Y, Liu Z, Huang M, Janssens IA, Piao S (2016) Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob Change Biol 22:3702–3711

    Article  Google Scholar 

  • Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  Google Scholar 

  • Meroni M, Verstraete MM, Rembold F, Urbano F, Kayitakire F (2014) A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. Int J Remote Sens 35:2472–2492

    Article  Google Scholar 

  • Misra G, Buras A, Menzel A (2016) Effects of different methods on the comparison between land surface and ground phenology—a methodological case study from South-Western Germany. Remote Sen 8

    Google Scholar 

  • Morin X, Viner D, Chuine I (2008) Tree species range shifts at a continental scale: new predictive insights from a process-based model. J Ecol 96:784–794

    Article  Google Scholar 

  • Morisette JT, Richardson AD, Knapp AK, Fisher JI, Graham EA, Abatzoglou J, Wilson BE, Breshears DD, Henebry GM, Hanes JM, Liang L (2009) Tracking the rhythm of the seasons in the face of global change: Phenological research in the 21st century. Front Ecol Environ 7:253–260

    Article  Google Scholar 

  • Moulin S, Kergoat L, Viovy N, Dedieu G (1997) Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. J Clim 10:1154–1170

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  Google Scholar 

  • Myneni RB, Tucker CJ, Asrar G, Keeling CD (1998) Interannual variations in satellite-sensed vegetation index data from 1981-1991. J Geophys Res D: Atmos 103:6145–6160

    Article  Google Scholar 

  • Ottlé C, Lescure J, Maignan F, Poulter B, Wang T, Delbart N (2013) Use of various remote sensing land cover products for plant functional type map** over Siberia. Earth Syst Sci Data 5:331–348

    Article  Google Scholar 

  • Park T, Ganguly S, Tømmervik H, Euskirchen ES, Høgda K-A, Karlsen SR, Brovkin V, Nemani RR, Myneni RB (2016) Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ Res Lett 11:084001

    Article  Google Scholar 

  • Parmentier FJW, Van Der Molen MK, Van Huissteden J, Karsanaev SA, Kononov AV, Suzdalov DA, Maximov TC, Dolman AJ (2011) Longer growing seasons do not increase net carbon uptake in the northeastern Siberian tundra. J Geophys Res: Biogeosci 116

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pennec A, Gond V, Sabatier D (2011) Tropical forest phenology in French Guiana from MODIS time series. Remote Sens Lett 2:337–345

    Article  Google Scholar 

  • Pereira HM, Ferrier S, Walters M et al (2013) Essential biodiversity variables. Science 339:277–278

    Article  Google Scholar 

  • Picard G, Quegan S, Delbart N, Lomas MR, Le Toan T, Woodward FI (2005) Bud-burst modelling in Siberia and its impact on quantifying the carbon budget. Glob Change Biol 11:2164–2176

    Article  Google Scholar 

  • Post E, Forchhammer MC (2008) Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos Trans R Soc Lond B: Biol Sci 363:2367–2373

    Article  Google Scholar 

  • Post E, Forchhammer MC, Bret-Harte MS, Callaghan TV, Christensen TR, Elberling B, Fox AD, Gilg O, Hik DS, Høye TT (2009) Ecological dynamics across the Arctic associated with recent climate change. Science 325:1355–1358

    Google Scholar 

  • Post E, Pedersen C, Wilmers CC, Forchhammer MC (2008) Warming, plant phenology and the spatial dimension of trophic mismatch for large herbivores. Proc R Soc Lond B: Biol Sci 275:2005–2013

    Google Scholar 

  • Pouliot I (2011) Evaluation of compositing period and AVHRR and MERIS combination for improvement of spring phenology detection in deciduous forests. Remote Sens Environ 115:158–166

    Article  Google Scholar 

  • Rea J, Ashley M (1976) Phenological evaluations using Landsat—1 sensors. Int J Biometeorol 20:240–248

    Article  Google Scholar 

  • Richardson AD, Black TA, Ciais P et al (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B: Biol Sci 365:3227–3246

    Article  Google Scholar 

  • Richardson M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  Google Scholar 

  • Sato H, Itoh A, Kohyama T (2007) SEIB-DGVM: a new Dynamic Global Vegetation Model using a spatially explicit individual-based approach. Ecol Model 200:279–307

    Article  Google Scholar 

  • Sato H, Kobayashi H, Delbart N (2010) Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM. For Ecol Manage 259:301–311

    Article  Google Scholar 

  • Schwartz MD (1998) Green-wave phenology [4]. Nature 394:839–840

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Change Biol 12:343–351

    Article  Google Scholar 

  • Schwartz MD, Reed BC, White MA (2002) Assesing satellite-derived start-of-season measures in the conterminous USA. Int J Climatol 22:1793–1805

    Article  Google Scholar 

  • Shabanov NV, Zhou L, Knyazikhin Y, Myneni RB, Tucker CJ (2002) Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994. IEEE Trans Geosci Remote Sens 40:115–130

    Article  Google Scholar 

  • Solomon S (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press

    Google Scholar 

  • Soudani S (2008) Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens Environ 112:2643–2655

    Article  Google Scholar 

  • Suzuki R, Kobayashi H, Delbart N, Asanuma J, Hiyama T (2011) NDVI responses to the forest canopy and floor from spring to summer observed by airborne spectrometer in eastern Siberia. Remote Sens Environ 115:3615–3624

    Article  Google Scholar 

  • Suzuki R, Nomaki T, Yasunari T (2003) West-east contrast of phenology and climate in northern Asia revealed using a remotely sensed vegetation index. Int J Biometeorol 47:126–138

    Article  Google Scholar 

  • Thompson BG (2015) Using phase-spaces to characterize land surface phenology in a seasonally snow-covered landscape. Remote Sens Environ 166:178–190

    Article  Google Scholar 

  • Thompson JA, Paull DJ (2017) Assessing spatial and temporal patterns in land surface phenology for the Australian Alps (2000–2014). Remote Sens Environ 199:1–13

    Article  Google Scholar 

  • Townshend JRG, Justice CO (1986) Analysis of the dynamics of african vegetation using the normalized difference vegetation index. Int J Remote Sens 7:1435–1445

    Article  Google Scholar 

  • Vicente-Serrano SM, Delbart N, Le Toan T, Grippa M (2006) El Niño-Southern Oscillation influences on the interannual variability of leaf appearance dates in central Siberia. Geophys Res Lett 33

    Google Scholar 

  • Vinogradov BV (1977) Remote sensing in ecological botany. Remote Sens Environ 6:83–94

    Article  Google Scholar 

  • Vors LS, Boyce MS (2009) Global declines of caribou and reindeer. Glob Change Biol 15:2626–2633

    Article  Google Scholar 

  • Walther G-R (2010) Community and ecosystem responses to recent climate change. Philos Trans R Soc B: Biol Sci 365:2019–2024

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  • Walther S, Voigt M, Thum T, Gonsamo A, Zhang Y, Köhler P, Jung M, Varlagin A, Guanter L (2016) Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob Change Biol 22:2979–2996

    Article  Google Scholar 

  • White MA, de Beurs KM, Didan K et al (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Change Biol 15:2335–2359

    Article  Google Scholar 

  • White MA, Hoffman F, Hargrove WW, Nemani RR (2005) A global framework for monitoring phenological responses to climate change. Geophys Res Lett 32:1–4

    Article  Google Scholar 

  • White MA, Nemani RR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Glob Change Biol 9:967–972

    Article  Google Scholar 

  • Woodward FI, Smith TM, Emanuel WR (1995) A global land primary productivity and phytogeography model. Global Biogeochem Cycles 9:471–490

    Article  Google Scholar 

  • Zeng BC (2013) Shifts in Arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series. Environ Res Lett 8

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84:471–475

    Article  Google Scholar 

  • Zhou G (2016) Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agric For Meteorol 226–227:246–256

    Article  Google Scholar 

Download references

Acknowledgments

Many thanks to the authors and coauthors of the published results that are summarized in this chapter, and in particular Elisabeth Beaubien, Sarah Dantec-Nédélec, Dennis Dye, Manuela Grippa, Laurent Kergoat, Hideki Kobayashi, Thuy Le Toan, Fabienne Maignan, Catherine Ottlé, Ghislain Picard, Hisashi Sato, and Sergio Vicente-Serrano. Thanks to VITO for providing SPOT-VEGETATION and PROBA-V data. The algorithm for green-up date extraction from PROBA-V data was implemented on the VITO MEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Delbart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delbart, N. (2021). Spring Phenology of the Boreal Ecosystems. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_19

Download citation

Publish with us

Policies and ethics

Navigation