Applications of Lignin in the Agri-Food Industry

  • Chapter
  • First Online:
Lignin

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Of late, valorization of agri-food industrial wastes and by-products and their sustainable utilization is gaining much contemplation world over. Globally, ‘Zero Waste Concept’ is promoted with the main emphasis laid toward the generation of minimal wastes and maximal utilization of plant-based agri-food raw materials. One of the wastes/by-products in the agri-food industry is the lignin, which occurs as lignocellulosic biomass. This biomass is deliberated to be an environmental pollutant as they offer resistance to natural biodegradation. Safe disposal of this biomass is often considered a major challenge, especially in low-income countries. Hence, the application of modern technologies to effectively reduce these types of wastes and maximize their potential use/applications is vital in the present-day scenario. Nevertheless, in some of the high-income countries, attempts have been made to efficiently utilize lignin as a source of fuel, as a raw material in the paper industry, as a filler material in biopolymer-based packaging, and for producing bioethanol. However, as of today, agri-food industrial applications remain significantly underexplored. Chemically, lignin is heterogeneous, biopolymeric, and a polyphenolic compound, which is present naturally in plants, providing mechanical strength and rigidity. Reports are available wherein purified lignin is established to possess therapeutic values and are rich in antioxidants, antimicrobial, anti-carcinogenic, anti-diabetic properties, etc. This chapter is divided into four sub-categories focusing on various technological aspects related to isolation and characterization of lignin, established uses of lignin, proved bioactivities and therapeutic potentials of lignin, and finally on identifying the existing research gaps followed by future recommendations for potential use from agri-food industrial wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abo BO, Gao M, Wang Y, Wu C, Ma H, Wang Q (2019) Lignocellulosic biomass for bioethanol: an overview on pre-treatment, hydrolysis and fermentation processes. Rev Environ Health 34(1):57–68

    Article  PubMed  CAS  Google Scholar 

  • Agarwal A, Rana M, Park JH (2018) Advancement in technologies for the depolymerization of lignin. Fuel Process Technol 181:115–132

    Article  CAS  Google Scholar 

  • Andrei G, Lisco A, Vanpouille C, Introini A et al (2011) Topical tenofovir, a microbicide effective against HIV, inhibits herpes simplex virus-2 replication. Cell Host Microbe 10:379–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • AwungachaLekelefac C, Busse N, Herrenbauer M, Czermak P (2015) Photocatalytic based degradation processes of lignin derivatives. Int J Photoenergy 12:1–18

    Article  CAS  Google Scholar 

  • Azadfar M, Gao AH, Bule MV, Chen S (2015) Structural characterization of lignin: a potential source of antioxidants guaiacol and 4-vinylguaiacol. Int J Biol Macromol 75:58–66

    Article  PubMed  CAS  Google Scholar 

  • Baker DA, Gallego NC, Baker FS (2012) On the characterization and spinning of organic purified lignin toward the manufacture of low-cost carbon fiber. J Appl Polym Sci 124:227–334

    Google Scholar 

  • Barana D, Ali SD, Salanti A, Orlandi M, Castellani L, Hanel T, Zoia L (2016) Influence of lignin features on thermal stability and mechanical properties of natural rubber compounds. ACS Sustain Chem Eng 4:5258–5267

    Article  CAS  Google Scholar 

  • Barapatre A, Aadil KR, Tiwary BN, Jha H (2015) In vitro antioxidant and antidiabetic activities of biomodified lignin from Acacia nilotica wood. Int J Biol Macromol 75:81–89

    Article  PubMed  CAS  Google Scholar 

  • Barapatre A, Meena AS, Mekala S, Das A, Jha H (2016) In vitro evaluation of antioxidant and cytotoxic activities of lignin fractions extracted from Acacia nilotica. Int J Biol Macromol 86:443–453

    Google Scholar 

  • Barclay LRC, ** F, Norris JQ (1997) Antioxidant properties of phenolic lignin model compounds. J Wood Chem Technol 17(1–2):73–90

    Article  CAS  Google Scholar 

  • Baumberger S, Lapierre C, Monties B, Lourdin D, Colonna B (1997) Preparation and properties of thermally moulded and cast lignosulfonates-starch blends. Ind Crops Prod 6:253–258

    Article  CAS  Google Scholar 

  • Baurhoo B, Ruiz-Feria CA, Zhaoa X (2008) Purified lignin: nutritional and health impacts on farm animals-A review. Anim Feed Sci Technol 144:175–184

    Article  CAS  Google Scholar 

  • Begum AN, Nicolle C, Mila I, Lapierre C, Nagano K, Fukushima K, Heinonen S-M, Adlercreutz H, Remesy C, Scalbert A (2004) Dietary lignins are precursors of mammalian lignans in rats. J Nutr 134:120–127

    Article  PubMed  CAS  Google Scholar 

  • Belicová A, Krajcovic J, Krizková L et al (2000) Anti-UV activity of lignin biopolymers on Euglena gracilis. World J Microbiol Biotechnol 16:91–93

    Google Scholar 

  • Bhat R, Abdullah N, Din RH, Tay G-S (2013) Producing novel sago starch-based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J Food Eng 119:707–713

    Google Scholar 

  • Browning WC (1955) Lignosulfonate stabilized emulsions in oil well drilling fluids. J Petrol Technol 7:9–15

    Article  CAS  Google Scholar 

  • Bruijnincx PCA, Weckhuysen BM (2014) Biomass conversion: lignin up for break-down. Nat Chem 6:1035–1036

    Google Scholar 

  • Bugg TDH, Rahmanpour R (2015) Enzymatic conversion of lignin into renewable chemicals. Curr Opin Chem Biol 29:10–17

    Google Scholar 

  • Bunzel M, Ralph J, Lu F, Hatfield RD, Steinhart H (2004) Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains. J Agric Food Chem 52:6496–6502

    Google Scholar 

  • Calgeris I, Cakmakci E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin– starch biodegradable films. Starch/Starke 64:399–407

    Article  CAS  Google Scholar 

  • Castro RCA, Ferreira IS, Roberto IC, Mussatto SI (2019) Isolation and physicochemical characterization of different lignin streams generated during the second-generation ethanol production process. Int J Biol Macromol 129:497–510

    Google Scholar 

  • Cateto CA, Barreiro MF, Ottati C, Lopretti M, Rodrigues AE, Belgacem MN (2014) Lignin-based rigid polyurethane foams with improved biodegradation. J Cell Plast 50:81–95

    Article  CAS  Google Scholar 

  • Chen F, Xu M, Wang L, Li J (2011) Preparation and characterization of organic aerogels by the lignin-resorcinol-formaldehyde copolymer. BioResources 6:1262–1272

    CAS  Google Scholar 

  • Chen Y, Zheng K, Niu L, Zhang Y, Liu Y, Wang C, Chu F (2019) Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int J Biol Macromol 128:414–420

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Wan C (2017) Biological valorization strategies for converting lignin into fuels and chemicals. Renew Sustain Energy Rev 73:610–621

    Google Scholar 

  • Crestini C, Crucianelli M, Orlandi M, Saladino R (2010) Oxidative strategies in lignin chemistry: a new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today 156:8–22

    Article  CAS  Google Scholar 

  • Cruz JM, Dominguez JM, Dominguez H, Parajo JC (2001) Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J Agric Food Chem 2001(49):2459–2464

    Article  CAS  Google Scholar 

  • Curvello R, Raghuwanshi VS, Garnier G (2019) Engineering nanocellulose hydrogels for biomedical applications. Adv Colloid Interface Sci 267:47–61

    Article  PubMed  CAS  Google Scholar 

  • Dizhbite T, Telysheva G, Jurkjane V, Viesturs U (2004) Characterization of the radical scavenging activity of lignins-natural antioxidants. Bioresour Technol 95:309–317

    Article  PubMed  CAS  Google Scholar 

  • Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crops Prod 33:259–276

    Article  CAS  Google Scholar 

  • Dong X, Dong M, Lu Y, Turley A, ** T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crops Prod 34:1629–1634

    Article  CAS  Google Scholar 

  • Du XY, Li LB, Lindström ME (2014) Modification of industrial softwood kraft lignin using Mannich reaction with and without phenolation pre-treatment. Ind Crops Prod 52:729–735

    Article  CAS  Google Scholar 

  • El-Zawawy WK (2005) Preparation of hydrogel from green polymer. Polym Adv Technol 16:48–54

    Article  CAS  Google Scholar 

  • Espinoza-Acosta JL, Torres-Chávez PI, Ramírez-Wong B et al (2016) Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources 11:5452–5481

    Article  Google Scholar 

  • Faustino H, Gil N, Baptista C, Duarte AP (2010) Antioxidant activity of lignin phenolic compounds extracted from kraft and sulphite black liquors. Molecules 15:9308–9322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes EM, Pires RA, Mano JF, Reis RL (2013) Bionanocomposites from lignocellulosic resources: properties, applications and future trends for their use in the biomedical field. Prog Polym Sci 38:1415–1441

    Article  CAS  Google Scholar 

  • Fierro CM, Gorka J, Zazo JA, Rodriguez JJ, Ludwinowicz J, Jaroniec M (2013) Colloidal templating synthesis and adsorption characteristics of microporous–mesoporous carbons from Kraft lignin. Carbon 62:233–239

    Article  CAS  Google Scholar 

  • Figueiredo P, Ferro C, Kemell M et al (2017a) Functionalization of carboxylated lignin nanoparticles for targeted and pH-responsive delivery of anticancer drugs. Nanomedicine 12(21):2581–2596

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo P, Lintinen K, Kiriazis A, Hynninen V, Liu Z, Bauleth-Ramos T et al (2017b) In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells. Biomaterials 121:97–108

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269

    Article  CAS  Google Scholar 

  • Frangville C, Rutkevicius M, Richter AP, Velev OD, Stoyanov SD, Paunov VN (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 13:4235–4243

    Article  PubMed  CAS  Google Scholar 

  • Gabov K, Oja T, Deguchi T, Fallarero A, Fardim P (2017) Preparation, characterization and antimicrobial application of hybrid cellulose-lignin beads. Cellulose 24:641–658

    Article  CAS  Google Scholar 

  • Galkin MV, Samec JS (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. Chemsuschem 9:1544–1558

    Article  PubMed  CAS  Google Scholar 

  • García A, Toledano A, Andrés MÁ, Labidi J (2010) Study of the antioxidant capacity of Miscanthus sinensis lignins. Process Biochem 45:935–940

    Article  CAS  Google Scholar 

  • Gil-Chávez GJ, Padhi SSP, Pereira CV et al (2019) Cytotoxicity and biological capacity of sulfur-free lignins obtained in novel biorefining process. Int J Biol Macromol 136:697–703

    Google Scholar 

  • Gong N, Yang D, ** G, Liu S, Du G, Lu Y (2019) Structure, characterization, solubility and stability of podophyllotoxin polymorphs. J Mol Struct 1195:323–330

    Google Scholar 

  • Guerrero E, Abad A, Montenegro G, del Olmo E, López-Pérez JS, Feliciano AS (2013) Analgesic and anti-inflammatory activity of podophyllotoxin derivatives. J Pharm Biol 51(5):566–572

    Google Scholar 

  • Gyawali R, Ibrahim SA (2014) Natural products as antimicrobial agents. Food Control 46:412–429

    Article  CAS  Google Scholar 

  • Hasegawa Y, Kadota Y, Hasegawa C, Kawiminami S (2015) Lignosulfonic acid-induced inhibition of intestinal glucose absorption. J Nutr Sci Vitaminol 61:449–454

    Article  PubMed  CAS  Google Scholar 

  • Hasnaoui N, Wathelet B, Jiménez-Araujo A (2014) Valorization of pomegranate peel from 12 cultivars: dietary fibre composition, antioxidant capacity and functional properties. Food Chem 160:196–203

    Article  PubMed  CAS  Google Scholar 

  • He ZW, He LH, Yang J, Lu QF (2013) Removal and recovery of Au (iii) from aqueous solution using a low-cost lignin-based biosorbent. Ind Eng Chem Res 52:4103–4138

    Article  CAS  Google Scholar 

  • Henry BL, Desai UR (2014) Sulfated low molecular weight lignins, Allosteric inhibitors of coagulation proteinases via the heparin binding site, significantly alter the active site of thrombin and factor xa compared to heparin. Thromb Res 134:1123–1129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang C, Tang S, Zhang W, Tao Y, Lai C, Li X, Yong Q (2018) unveiling the structural properties of lignin–carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain Chem Eng 69:12522–12531

    Article  CAS  Google Scholar 

  • Hui L, Lincai P (2015) Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition on chitosan and lignosulfonates. Carbohydr Polym 124:35–42

    Article  CAS  Google Scholar 

  • Jaganathan G, Manivannan K, Lakshmanan S, Sithique MA (2018) Fabrication and characterization of Artocarpus heterophyllus waste derived lignin added chitosan biocomposites for wound dressing application. Sustain Chem Pharm 10:27–32

    Article  Google Scholar 

  • Jonglertjunya W, Juntong T, Pakkang N, Srimarut N, Sakdaronnarong C (2014) Properties of lignin extracted from sugarcane bagasse and its efficacy in maintaining postharvest quality of limes during storage. LWT Food Sci Technol 57:116–125

    Article  CAS  Google Scholar 

  • Kai D, Jiang S, Low ZW, Loh XJ (2015) Engineering highly stretchable lignin-based electrospun nanofibers for potential biomedical applications. J Mater Chem B 3:6194–6204

    Article  PubMed  CAS  Google Scholar 

  • Kaur R, Uppal SK, Sharma P (2017) Antioxidant and antibacterial activities of sugarcane bagasse lignin and chemically modified lignin. Sugar Technol 19:675–680

    Article  CAS  Google Scholar 

  • Kim D (2018) Physico-chemical conversion of lignocellulose: inhibitor effects and detoxification strategies: a mini review. Mol (Basel, Switzerland), 23(2):309. https://doi.org/10.3390/molecules23020309

  • Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Dutta T, Sun J, Simmons B, Singh S (2018) Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem 20:809–815

    Google Scholar 

  • Klapiszewski L, Nowacka M, Milczarek G, Jesionowski T (2013) Physicochemical and electrokinetic properties of silica/lignin biocomposites. Carbohydr Polym 94:345–355

    Article  PubMed  CAS  Google Scholar 

  • Korbag I, Saleh SM (2014) Extraction of lignin from paper industry waste. Int J Appl Eng Res 9:19421–19428

    Google Scholar 

  • Kubo S, Kadla JF (2005) Hydrogen bonding in lignin: a fourier transform infrared model compound study. Biomacromol 6:2815–2821

    Article  CAS  Google Scholar 

  • Lee E, Lee S (2014) Fabrication of lignin nanofibers using electrospinning. J Korean Soc Clothing Text 38:372–385

    Article  Google Scholar 

  • Lee JB, Yamagishi C, Hayashi K, Hayashi T (2011) Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinellaanisum. Biosci Biotechnol Biochem 75(3):459–465

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Thu Tran TM, Choi JW, Won K (2019) Lignin for white natural sunscreens. Int J Biol Macromol 122:549–554

    Article  PubMed  CAS  Google Scholar 

  • Li H-L, She D, Peng P, Xu Q, Liu J-K, Zhang X-M, Geng Z-C (2017) Optimizing extraction and structural characterization of organosolv lignin from wheat straw. Cellul Chem Technol 51:433–445

    Google Scholar 

  • Li Z, Ge Y (2012) Antioxidant activities of lignin extracted from sugarcane bagasse via different chemical procedures. Int J Biol Macromol 51:1116–1120

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Yan X, Si M, Deng X, Min X, Shi Y, Chai L (2019) Bioconversion of lignin into bioplastics by Pandoraea sp. B-6: molecular mechanism. Environ Sci Pollut Res 3:2761–2770

    Google Scholar 

  • Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to non-renewable materials. J Polym Environ 10:39–48

    Article  CAS  Google Scholar 

  • Lou HM, Zhou HF, Li XL, Wang MX, Zhu JY, Qiu XQ (2014) Understanding the effects of lignosulfonate on enzymatic saccharification of pure cellulose. Cellulose 21:1352–1359

    Google Scholar 

  • Lou HM, Zhu JY, Lan TQ, Lai HR, Qiu XQ (2013) pH-induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. Chemsuschem 6:919–927

    Article  PubMed  CAS  Google Scholar 

  • Lu FJ, Chu LH, Gau RJ (1998) Free radical-scavenging properties of lignin. Nutr Cancer 30:31–38

    Article  PubMed  CAS  Google Scholar 

  • Luo X, **ao Y, Wu Q, Zeng J (2018) Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: lignin and soy oil derived polyols. Int J Biol Macromol 115:786–791

    Article  PubMed  CAS  Google Scholar 

  • Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ (2015) Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sustain Energy Rev 49:871–906

    Article  CAS  Google Scholar 

  • Mansfield SD (2009) Solutions for dissolution-engineering cell walls for deconstruction. Curr Opin Biotechnol 20:286–294

    Article  PubMed  CAS  Google Scholar 

  • Marulasiddeshwara MB, Dakshayani SS, Sharath Kumar MN et al (2017) Facile-one pot-green synthesis, antibacterial, antifungal, antioxidant and antiplatelet activities of lignin capped silver nanoparticles: a promising therapeutic agent. Mater Sci Eng, C 81:182–190

    Article  CAS  Google Scholar 

  • Matsuhisa K, Yamane S, Okamoto T, Watari A, Kondoh M et al (2015) Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin. Biochem Biophys Res Commun 462:52–57

    Article  PubMed  CAS  Google Scholar 

  • Medina JDC, Woiciechowski AL, Filho AZ et al (2016) Biological activities and thermal behavior of lignin from oil palm empty fruit bunches as potential source of chemicals of added value. Ind Crops Prod 94:630–637

    Article  CAS  Google Scholar 

  • Mehta AY, Mohammed BM, Martin EJ, Brophy DF, Gailani D, Desai UR (2016) Allosterism-based simultaneous, dual anticoagulant and antiplatelet action. Allosteric inhibitor targeting the glycoprotein ibα and heparin-binding site of thrombin. J Thromb Haemost 14:828–838

    Google Scholar 

  • Meister JJ (2007) Modification of lignin. J Macromol Sci Part C: Polym Rev 42(2):235–289

    Article  Google Scholar 

  • Mishra PK, Ekielski A (2019) The self-assembly of lignin and its application in nanoparticle synthesis: a short review. Nanomaterials (Basel) 9(2). https://doi.org/10.3390/nano9020243 (in press)

  • Mishra PK, Wimmer R (2017) Aerosol assisted self-assembly as a route to synthesize solid and hollow spherical lignin colloids and its utilization in layer by layer deposition. Ultrason Sonochem 35:45–50

    Article  PubMed  CAS  Google Scholar 

  • Mitjans M, Vinardell MP (2005) Biological activity and health benefits of lignans and lignins. Trends Comp Biochem Physiol 11:55–62

    CAS  Google Scholar 

  • Monien BH, Henry BL, Raghuraman A, Hindle M, Desai UR (2006) Novel chemo-enzymatic oligomers of cinnamic acids as direct and indirect inhibitors of coagulation proteinases. Bioorg Med Chem 14:7988–7998

    Article  PubMed  CAS  Google Scholar 

  • Mulder WJ, Gosselink RJA, Vingerhoeds MH, Harmsen PFH, Eastham D (2011) Lignin based controlled release coatings. Ind Crops Prod 34:915–920

    Article  CAS  Google Scholar 

  • Nada AMA, El-Diwanya AI, Elshafei AM (1989) Infrared and antimicrobial studies on different lignins. Acta Biotechnol 9(3):295–298

    Article  CAS  Google Scholar 

  • Naegelem H, Pfitzer J, Zieglerm L, Inone-Kauffmann ER, Eisenreich N (2016) Applications of lignin materials and their composites. In: Faruk O, Sain M (eds) Lignin in polymer composites. Elsevier Inc., Amsterdam, pp 233–244

    Google Scholar 

  • Nagaraju DH, Rebis T, Gabrielsson R, Elfwing A, Milczarek G, Inganäs O (2014) Charge storage capacity of renewable biopolymer/conjugated polymer interpenetrating networks enhanced by electroactive dopants. Adv Energy Mater 4:1–7

    Article  CAS  Google Scholar 

  • Nakashima H, Murakami T, Yamamoto N, Sakagami H, Tanuma S et al (1992) Inhibition of human immunodeficiency viral replication by tannins and related compounds. Antiviral Res 18:91–103

    Article  PubMed  CAS  Google Scholar 

  • Nar M, Rizvi HR, Dixon RA, Chen F, Kovalcik A, D’Souza N (2016) Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon 103:372–383

    Article  CAS  Google Scholar 

  • Nimz H (1974) Beech lignin-proposal of a constitutional scheme. Angew Chem Int Edn 13:313–321

    Google Scholar 

  • Norikura T, Mukai Y, Fujita S, Mikame K, Funaoka M, Sato S (2010) Lignophenols decrease oleate-induced apolipoprotein-B secretion in HepG2 cells. Basic Clin Pharmacol Toxicol 107:813–817

    Article  PubMed  CAS  Google Scholar 

  • Núñez-Flores R, Giménez B, Fernández-Martín F, López-Caballero ME, Montero MP, Gómez-Guillén MC (2013) Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocolloids 30:163–172

    Article  CAS  Google Scholar 

  • Oh-Hara T, Sakagami H, Kawazoe Y, Kaiya T, Komatsu N, Ohsawa N et al (1990) Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc. In Vivo 4:7–12

    Google Scholar 

  • Ojagh SM, Núñez-Flores R, López-Caballero ME, Montero MP, Gómez-Guillén MC (2011) Lessening of high-pressure-induced changes in Atlantic salmon muscle by the combined use of a fish gelatine lignin film. Food Chem 125(2):595–606

    Article  CAS  Google Scholar 

  • Ou S, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269

    Article  CAS  Google Scholar 

  • Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agric Food Chem 54:5806–5813

    Article  PubMed  CAS  Google Scholar 

  • Paszner L, Cho HJ (1989) Organosolv pul**: acidic catalysis options and their effect on fiber quality and delignification. Tappi J 72:135–142

    CAS  Google Scholar 

  • Peng Z, Chen F (2011) Synthesis and properties of lignin-based polyurethane hydrogels. Int J Polym Mater 60:674–683

    Article  CAS  Google Scholar 

  • Peng Y, Nicastro KH, Epps TH, Wu C (2018) Evaluation of estrogenic activity of novel bisphenol a alternatives, four bioinspired bisguaiacol of specimens, by in vitro assays. J Agric Food Chem 6644:11775–11783

    Article  CAS  Google Scholar 

  • Pereira FM, Gonçalves AR, Ferraz A, Silva FT, Oliveira SC (2003) Estimation of solubility effect on the herbicide controlled-release kinetics from lignin-based formulations. Appl Biochem Biotechnol 108:913–919

    Article  Google Scholar 

  • Popaa VI, Dumitrua M, Volf I, Anghelb N (2008) Lignin and polyphenols as allelochemicals. Ind Crops Prod 27:144–149

    Article  CAS  Google Scholar 

  • Pouteau C, Cathala B, Dole P, Kurek B, Monties B (2005) Structural modification of Kraft lignin after acid treatment: characterization of the apolar extracts and the influence on the antioxidant properties in polypropylene. Ind Crops Prod 21:101–108

    Article  CAS  Google Scholar 

  • Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degrad Stab 81:9–18

    Article  CAS  Google Scholar 

  • Priefert H, Babenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3–4):296–314

    Article  PubMed  CAS  Google Scholar 

  • Pucciariello R, D’Auria M, Villani V, Shulga G (2010) Lignin/poly (ε-caprolactone) blends with tuneable mechanical properties prepared by high-energyball-milling. J Environ Polym Degrad 18:326–334

    Article  CAS  Google Scholar 

  • Qian Y, Qiu X, Zhu S (2015) Lignin: a nature-inspired sun blocker for broad spectrum sunscreens. Green Chem 17:320–324

    Article  CAS  Google Scholar 

  • Qu L, Chen JB, Zhang GJ, Sun SQ, Zheng J (2017) Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 174:177–182

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R et al (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:709–720

    Article  CAS  Google Scholar 

  • Richter AP, Bharti B, Armstrong HB, Brown JS, Plemmons D, Paunov VN, Stoyanov SD, Velev OD (2016) Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties. Langmuir 32(25):6468–6477

    Google Scholar 

  • Rinaldi R, Jastrzebski R, Clough MT et al (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Edn 55:8164–8215

    Article  CAS  Google Scholar 

  • Ro D, Shafaghat H, Jang SH et al (2019) Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer. Environ Res 172:658–664

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez A, Jiménez L (2008) Pul** with organic solvents other than alcohols. Afinidad 65:88–196

    Google Scholar 

  • Sadeghifar H, Argyropoulos DS (2015) Correlations of the antioxidant properties of softwood kraft lignin fractions with the thermal stability of its blends with polyethylene. ACS Sustain Chem Eng 3:349–356

    Article  CAS  Google Scholar 

  • Sakagami H, Hashimoto K, Suzuki F, Ogiwara T, Satoh K et al (2005) Molecular requirements of lignin-carbohydrate complexes for expression of unique biological activities. Phytochemistry 66:2108–2120

    Article  PubMed  CAS  Google Scholar 

  • Sakagami H, Satoh K, Fukamachi H, Ikarashi T, Shimizu A et al (2008) Anti-HIV and vitamin C-synergized radical scavenging activity of cacao husk lignin fraction. Vivo 22(3):327–332

    Google Scholar 

  • Salamouny SE, Herz A, Huber J (2002) Suitability of three lignin products as UV protectants to baculovirus. Bull Entomol Soc Egypt 28:103–111

    Google Scholar 

  • Salamouny SE, Shapiro M, Ling KS et al (2009) Black tea and lignin as ultraviolet protectants for the beet armyworm nucleopolyhedrovirus. J Entomol Sci 44:50–58

    Article  Google Scholar 

  • Salanti A, Zoia L, Orlandi M, Zanini F, Elegir G (2010) Structural characterization and antioxidant activity evaluation of lignins from rice husk. J Agric Food Chem 58:10049–10055

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Mukai Y, Yamate J, Norikura T, Morinaga Y, Mikame K, Funaoka M, Fujita S (2009) Lignin-derived lignophenols attenuate oxidative and inflammatory damage to the kidney in streptozotocin-induced diabetic rats. Free Radical Res 43:1205–1213

    Article  CAS  Google Scholar 

  • Satoh K, Kihara T, Ida Y et al (1999) Radical modulation activity of pine cone extracts of Pinuselliottii var. Elliottii. Anticancer Res 19:357–364

    PubMed  CAS  Google Scholar 

  • Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham G, Sels B (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47:852–908

    Article  PubMed  CAS  Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation of lignin. Curr Opin Plant Biol 2:145–152

    Article  PubMed  CAS  Google Scholar 

  • Shi L, Ge J, Nie S, Qin C, Yao S (2019) Effect of lignin structure on adsorbable organic halogens formation in chlorine dioxide bleaching. Royalty Soc Open Sci 6(2):182024

    Article  CAS  Google Scholar 

  • Siddiqui L, Mishra H, Mishra PK, Iqbal Z, Talegaonkar S (2018) Novel 4-in-1 strategy to combat colon cancer, drug resistance and cancer relapse utilizing functionalized bioinspiring lignin nanoparticle. Med Hypotheses 121:10–14

    Article  PubMed  CAS  Google Scholar 

  • Slavikova E, Kosikova B (1994) Current awareness on yeast. Yeast 11(3):293–300

    Google Scholar 

  • Song Y, Hui J, Kou W, **n R, Jia F, Wang N, Hu F, Zhang H, Liu H (2008) Identification of Inonotus obliquus and analysis of antioxidation and antitumor activities of polysaccharides. Curr Microbiol 57:454–462

    Article  PubMed  CAS  Google Scholar 

  • Spiridon I (2018) Biological and pharmaceutical applications of lignin and its derivatives: a mini-review. Cellul Chem Technol 52(7–8):543–550

    CAS  Google Scholar 

  • Stephen LY (1981) New lignosulfonate dispersant for dyes. Text Chem Colorist 13:24–28

    Google Scholar 

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207

    Article  CAS  Google Scholar 

  • Sunthornvarabhas J, Liengprayoon S, Suwonsichon T (2017) Antimicrobial kinetic activities of lignin from sugarcane bagasse for textile product. Ind Crops Prod 109:857–861

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  PubMed  CAS  Google Scholar 

  • Thomas VA, Donohoe BS, Li M, Pu Y, Ragauskas AJ, Kumar R, Nguyen TY, Cai CM, Wyman CE (2017) Adding tetrahydrofuran to dilute acid pretreatment provides new insights into substrate changes that greatly enhance biomass deconstruction by Clostridium thermocellum and fungal enzymes. Biotechnol Biofuels 10:252 (1-13)

    Google Scholar 

  • Tortora M, Cavalieri F, Mosesso P et al (2014) Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules. Biomacromol 15:1634–1643

    Article  CAS  Google Scholar 

  • Ugartondo V, Mitjans M, Vinardell MP (2008) Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour Technol 99(14):6683–6687

    Article  PubMed  CAS  Google Scholar 

  • Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Biotechnol 11:278–285

    Google Scholar 

  • Vengal JC, Srikumar M (2005) Processing and study of novel lignin-starch and lignin-gelatin biodegradable polymeric films. Trends Biomater Artif Organs 18(2):237–241

    Google Scholar 

  • Vinardell MP, Ugartondo V, Mitjans M (2008) Potential applications of antioxidant lignins from different sources. Ind Crops Prod 27:220–223

    Article  CAS  Google Scholar 

  • Wang J, Cao F, Su E, Wu C, Zhao L, Ying R (2013) Improving flavonoid extraction from Ginkgo biloba leaves by pre-fermentation processing. J Agric Food Chem 61:5783–5791

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Cao F, Su E, Zhao L, Qin W (2018) Improvement of animal feed additives of Ginkgo leaves through solid-state fermentation using Aspergillus niger. Int J Biol Sci 14:736–747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Pu Y, Ragauskas A, Yang B (2019a) From lignin to valuable products-strategies, challenges, and prospects. Bioresour Technol 271:449–461

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Zuoa Z, Chucky Cheung CK, Yee Leung SS (2019b) Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 559:86–101

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Wang G, **a Y, Sui W, Si C (2019c) Functionality study of lignin as a tyrosinase inhibitor: influence of lignin heterogeneity on anti-tyrosinase activity. Int J Biol Macromol 128:107–113

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Zhao J (2013) Encapsulation of the herbicide picloram by using polyelectrolyte biopolymers as layer-by-layer materials. J Agric Food Chem 61:3789–3796

    Article  PubMed  CAS  Google Scholar 

  • Whetten R, Sederoffa R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Chen F, Feng Q, Yue X (2012) Oxidation and sulfomethylation of alkali-extracted lignin from corn stalk. BioResources 7(3):2742–2751

    CAS  Google Scholar 

  • Xu CP, Arancon RAD, Labidi J, Luque R (2014) Lignin depolymerisation strategies: towards valuable chemicals and fuels. Chem Soc Rev 43:7485–7500

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Fortunati E, Dominici F et al (2016) Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active. Int J Biol Macromol 89:360–368

    Article  PubMed  CAS  Google Scholar 

  • Yearla SR, Padmasree K (2016) Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants. J Exp Nanosci 11:289–302

    Google Scholar 

  • Zamboni F, Vieira S, Reis RL, Oliveira JM, Collins MN (2018) The potential of hyaluronic acid in immunoprotection and immunomodulation: chemistry, processing and function. Prog Mater Sci 97:97–122

    Article  CAS  Google Scholar 

  • Zemek J, Kosíková B, Augustín J, Joniak D (1979) Antibiotic properties of lignin components. Folia Microbiol 24:483–486

    Article  CAS  Google Scholar 

  • Zhang F, Lin J, Zhao G (2016) Preparation and characterization of modified soda lignin with polyethylene glycol. Materials (Basel) 9(10):822

    Article  CAS  Google Scholar 

  • Zhang J, Cui J-H, Yin T, Sun L, Li G (2013) Activated effect of lignin on α-amylase. Food Chem 141:2229–2237

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, **ao L, Yang Y, Wang Z, Li G (2014) Lignin binding to pancreatic lipase and its influence on enzymatic activity. Food Chem 149:99–106

    Article  PubMed  CAS  Google Scholar 

  • Zhang MY, Xu YJ, Li KC (2007) Removal of residual lignin of ethanol-based organosolv pulp by an alkali extraction process. J Appl Polym Sci 106(1):630–636

    Article  CAS  Google Scholar 

  • Zhou Y, Wang D, Yang D, Qiu X, Li Y (2019) Avermectin loaded nanosphere prepared from acylated alkali lignin showed anti-photolysis property and controlled release performance. Ind Crops Prod 137:453–459

    Article  CAS  Google Scholar 

  • Zhu L, Xu X (2013) Stimulatory effect of different lignocellulosic materials for phenolic compound production and antioxidant activity from Inonotus obliquus in submerged fermentation. Biotechnol Appl Biochem 169(7):2138–2152

    Article  CAS  Google Scholar 

  • Zikeli F, Vinciguerra V, D’Annibale A, Capitani D, Romagnoli M, Scarascia Mugnozza G (2019) Preparation of lignin nanoparticles from wood waste for wood surface treatment. Nanomaterials (Basel) 9(2): pii: E281. https://doi.org/10.3390/nano9020281 (in press)

  • Zimniewska M, Batog J, Bogacz E, Romanowska B (2012) Functionalization of natural fibres textiles by improvement of nanoparticles fixation on their surface. J Fiber Bioeng Inform 5:321–339

    Article  Google Scholar 

  • Zimniewska M, Kozlowski R, Batog J (2008) Nanolignin modified linen fabric as a multifunctional product. Mol Cryst Liq Cryst 484:409–416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The theme of this chapter is based on our ongoing project— VALORTECH, which has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 810630.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, R., Ahmad, A., Jõudu, I. (2020). Applications of Lignin in the Agri-Food Industry. In: Sharma, S., Kumar, A. (eds) Lignin. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-40663-9_10

Download citation

Publish with us

Policies and ethics

Navigation