Log in

Lignin/Poly(ε-Caprolactone) Blends with Tuneable Mechanical Properties Prepared by High Energy Ball-Milling

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Polymer blends between lignin, a natural, widely available, no-cost material, and Poly(ε-caprolactone) (PCL), a biodegradable polymer, have been prepared using the ‘clean’, friendly to the environment, technique of the High Energy Ball Milling (HEBM). Two kinds of lignin have been used, Straw lignin, obtained through the Steam Explosion process (SE lignin), and/or Lignosulphonated one (LS lignin). The tensile mechanical tests have shown that, at certain specific compositions, the blends, in particular those with both SE and LS lignin, have good mechanical properties. In particular, by varying the blend composition it is possible to obtain materials with tuneable properties, therefore useful for different applications. Dynamic-Mechanical-Thermal Analysis (DMTA) reveals substantial immiscibility of the blends. Experiments of UV irradiation show that lignin acts as an UV stabilizer for PCL. The effect is higher with SE lignin, likely due to its low molecular weight, which allows the short lignin chains to diffuse more easily within the amorphous regions of PCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Glasser WG, Sarkanen S (1989) Lignin: properties and materials. ACS Symposium Series 398, American Chemical Society, Washington DC

  2. Mai C, Majcherczyk A, Schormann W, Hüttermann A (2002) Polym Degrad Stab 75:107

    Article  CAS  Google Scholar 

  3. Mai C, Milstein O, Huttermann A (2000) J Biotechnol 79:173

    Google Scholar 

  4. Meister JJ, Damodar RP, Harvey C (1984) J Appl Polym Sci 29:3457

    Article  CAS  Google Scholar 

  5. Meister JJ, Chen MJ (1991) Macromolecules 24:6843

    Article  CAS  Google Scholar 

  6. Meister JJ, Chen MJ (1993) J Appl Polym Sci 49:935

    Article  CAS  Google Scholar 

  7. Chen M-J, Gunnells DW, Gardner DJ, Milstein O, Gersonde R, Feine HJ, Huttermann A, Frund R, Ludemann HD, Meister JJ (1996) Macromolecules 29:1389

    Article  CAS  Google Scholar 

  8. De Oliveira W, Glasser WG (1994) Macromolecules 27:5

    Article  Google Scholar 

  9. Kadla JF, Kubo S (2004) Composites Part A: Appl Sci Manufact 35:395

    Article  Google Scholar 

  10. Koikova A, Podstranka G (2000) Polymer 41:4901

    Article  Google Scholar 

  11. Pucciariello R, Villani V, Bonini C, D’Auria M, Vetere T (2004) Polymer 45:4159

    Article  CAS  Google Scholar 

  12. Kadla JF, Kubo S (2003) Macromolecules 4:561

    Google Scholar 

  13. Kubo S, Kadla JE (2004) Macromolecules 37:6904

    Article  CAS  Google Scholar 

  14. Kubo S, Kadla JF (2005) J Appl Polym Sci 98:1437

    Article  CAS  Google Scholar 

  15. Li Y, Sarkanen S (2002) Macromolecules 35:9707

    Article  CAS  Google Scholar 

  16. Kubo S, Kadla JF (2003) Biomacromolecules 4:561

    Article  CAS  Google Scholar 

  17. Corradini E, Pineda EAG, Hechleitner AAW (1999) Polym Degrad Stab 66:199

    Article  CAS  Google Scholar 

  18. El Raghi S, Zahran RR, Gebril BE (2000) Mater Lett 46:332

    Article  CAS  Google Scholar 

  19. Bonini C, D’Auria M, Mauriello G, Pucciariello R, Teghil R, Tofani D, Viggiani L, Viaggiano D, Zimbardi F (2001) J Appl Polym Sci 79:72

    Article  CAS  Google Scholar 

  20. Bonini C, D’Auria M, Ferri R, Pucciariello R, Sabia A (2003) J Appl Polym Sci 90:1163

    Article  CAS  Google Scholar 

  21. Bonini C, D’Auria M, Emanuele L, Ferri R, Pucciariello R, Sabia A (2005) J Appl Polym Sci 98:1451

    Article  CAS  Google Scholar 

  22. Pucciariello R, Bonini C, D’Auria M, Villani V, Giammarino G, Gorrasi G (2008) J Appl Polym Sci 109:309

    Article  CAS  Google Scholar 

  23. Rowlands SA, Hall AK, Mc Cormick PG, Street R, Hart RJ, Ebell GF et al (1994) Nature 22:367

    Google Scholar 

  24. Shaw WJD (1998) Mater Sci Forum 19:269

    Google Scholar 

  25. Magini M, Bugio N, Iasonna A, Martelli S, Padella F, Paradiso E (1993) J Mater Synth Proc 3:1

    Google Scholar 

  26. Sorrentino A, Gorrasi G, Tortora M, Vittoria V, Costantino U, Marmottini F, Padella F (2005) Polymer 46:1601

    Article  CAS  Google Scholar 

  27. Shulga G, Kalyuzhnava R, Zezin A, Kabanov V (2002) Cellulose Chem Technol 36:225

    CAS  Google Scholar 

  28. Bamford CH, Norrish RGW (1935) J Chem Soc 1504

  29. Ikada E (1997) J Photopol Technol 10:265

    Article  CAS  Google Scholar 

  30. Tsuji H, Echizen Y, Nishimura Y (2006) Polym Degrad Stab 91:1128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachele Pucciariello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pucciariello, R., D’Auria, M., Villani, V. et al. Lignin/Poly(ε-Caprolactone) Blends with Tuneable Mechanical Properties Prepared by High Energy Ball-Milling. J Polym Environ 18, 326–334 (2010). https://doi.org/10.1007/s10924-010-0212-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0212-1

Keywords

Navigation