Application of Nanotechnology in Agriculture

  • Chapter
  • First Online:
Environmental Nanotechnology Volume 4

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 32))

Abstract

Indian agricultural growth has reduced from about 3.6% in 1985–1995 to less than 2% in 1995–2005. This is far below than the targeted 4% annual growth in agricultural sector for 2020. The major concern is food grain production. Among the many scientific advancements, nanotechnology (NT) has been identified as a potential technology for reviving the agriculture and food industry and can improve livelihood of poor. Various sectors like health care, materials, textile, information and communication technology (ITC), and energy can get huge benefits from nanotechnology. In agricultural sector in particular, nanotechnology plays an important role in crop production, food processing and packaging, food security and water purification, environmental remediation, crop improvement, and plant protection. Agricultural productivity can be improved through nanomaterial-induced genetically improved animals and plants, site-specific drug and gene delivery of molecules at cellular/molecular levels in animals and plants, and nano-array-based genetic modification in animals and plants in stress conditions. Nanotechnology has the potential of precise delivery of agrochemicals for improving disease resistance, plant growth, and nutrient use. Nanoencapsulated products show the ability of more effective and site-specific use of pesticides, insecticides, and herbicides in an eco-friendly and greener way. It is successfully used in postharvest for maintaining freshness, quality, and shelf life of stored product and preventing disease occurrences in a fairly safer way. The use of nanomaterials is quite new in agriculture and it requires additional research. Social and ethical repercussions of nanotechnology uses in agriculture have to be considered. Before commercialization and field application, toxicity of nanomaterials has to be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnihotri S, Rood MJ, Rostam-Abadi M (2005) Adsorption equilibrium of organic vapors on singlewalled carbon nanotubes. Carbon [Online] 43:2379–2388. Available: web.utk.edu/~enrg/Navigation.../Agnihotri_05_Adsorption_equilibrium. www.springerlink.com/index/u76r1743j02292n3.pdf

    Article  CAS  Google Scholar 

  • Aguilera JM (2005) Why food microstructure? J Food Eng 67(1–2):3–11

    Article  Google Scholar 

  • Akyildiz Ian F, Jornet JM (2010) Nano Commun Networks 1:3–19

    Article  Google Scholar 

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Moniz FB, Brandhoff P et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463–476

    Article  Google Scholar 

  • Annual report (2017–2018) Ministry of Agriculture, Govt. of India

    Google Scholar 

  • Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Pest Manag Sci 68:158–163

    Article  CAS  Google Scholar 

  • Anonymous (2004) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. http://www.etcgroup.org/es/content/jazzing-jasmine-atomically-modified-rice-asia

  • Aulenta F, Hayes W, Rannard S (2003) Dendrimers a new class of nanoscopic containers and delivery devices. J Eur Polym 39(9):1741–1771

    Article  CAS  Google Scholar 

  • AZoNanotechnology Article: “Precision Agriculture – Nanotech Methods Used, Such as ‘Smart Dust’, Smart Fields’ and Nanosensors:” http://www.azonano.com/details.asp.ArticleID=1318

  • Blackmore S (1994) Precision farming: an introduction. Outlook Agric 23(4):275–280

    Article  Google Scholar 

  • Brady NR, Weil RR (1999) In: Brady NR, Weil RR (eds) The nature and properties of soils. Prentice Hall, Upper Saddle River, pp 415–473

    Google Scholar 

  • Castro ML, Ojeda C, Cirelli A (2013) Advances in surfactants for agrochemicals. Environ Chem Lett:1–11

    Google Scholar 

  • Chau C, Wu S, Yen G (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. J Food Technol 60(3):30–36

    CAS  Google Scholar 

  • Cheng MMC, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T, Ferrari M (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19

    Article  CAS  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Madras Agric J 96:17–31

    Google Scholar 

  • Christensen FM, Olsen SI (2004) The potential role of life cycle assessment in regulation of chemicals in the European Union. Int J Life Cycle Assess 9(5):327–332

    Article  CAS  Google Scholar 

  • Cook DJ, Augusto JC, Vikramaditya JR (2009) Ambient intelligence: technologies, applications, and opportunities. Pervasive Mob Comput 5(4):277–298

    Article  Google Scholar 

  • Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK. Express Polym Lett 4:509–515

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. Nanotechnologies for the treatment of water, air and soil. J Hazard Mater 211–212:112–125

    Article  CAS  Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya S, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • Dowling A, Clift R, Grobert N, Hutton D, Oliver R, O’Neill O, Pethica J, Pidgeon N, Porritt J, Ryan J, Seaton A (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. Royal Society and Royal Academy of Engineering, London

    Google Scholar 

  • Dressler F, Kargle F (2012) Towards security in Nano-communication: challenges and opportunities. Elsevier Nano Commun Netw 3(3):151–160

    Article  Google Scholar 

  • EC (2012) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A European strategy for Key Enabling Technologies – A bridge to growth and jobs. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:012:0341:FIN:EN:PDF

  • ETC group (2004) http://www.etcgroup.org/documents/ETC_DOTFarm2004.pdf. Down on the farm

  • Fujita Y, Yokoyama H, Abe S (2006) Perception of nanotechnology among the general public in Japan—of the NRI nanotechnology and society survey project. Asia Pacific Nanotechnol Wkly 4:1–2

    Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111:239–253

    Article  CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  • Gould-Fogerite S, Mannino RJ, Margolis D (2007) Cochleate delivery vehicles: applications to gene therapy. Drug Deliv Technol 3(2):40–47

    Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  Google Scholar 

  • Helmke BP, Minerick AR (2006) Designing a nano-interface in a microfluidic chip to probe living cells: challenges and perspectives. Proc Natl Acad Sci U S A 103:6419–6424

    Article  CAS  Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effects of Nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  Google Scholar 

  • Hsieh YHP, Ofori JA (2007) Innovations in food technology for health. Asia Pac J Clin Nutr 16:65–73

    CAS  Google Scholar 

  • http://go.nature.com/8CgPeg

    Google Scholar 

  • http://go.nature.com/rGNFu8

    Google Scholar 

  • Hughes GA (2005) Nanostructure-mediated drug delivery. Nanomed Nanotechnol Biol Med 1:22–30

    Article  CAS  Google Scholar 

  • Ing LY, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:9

    Article  CAS  Google Scholar 

  • Irwin A, Wynne B (2003) Misunderstanding science?: the public reconstruction of science and technology. Cambridge University Press, Cambridge

    Google Scholar 

  • Jelinski L (2002) Biologically related aspects of nanoparticles, nanostructured materials, and nanodevices. In: Siegel RW, Hu E, Roco MC (eds) Nanostructure science & technology. A worldwide study, prepared under the guidance of national science and technology council and the interagency working group on nanoscience, engineering, and technology, May 2002. Available online at www.wtec.org/loyola/nano/toc.htm

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food, A Nanoforum report, available for download from www.nanoforum.org

  • Kah M, Beulke S, Tiede K, Hofmann T (2012) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867

    Article  CAS  Google Scholar 

  • Kahan DM, Braman D, Slovic P, Gastil J, Cohen G (2009) Cultural cognition of the risks and benefits of nanotechnology. Nat Nanotechnol 4(2):87–90

    Article  CAS  Google Scholar 

  • Kalpana-Sastry R, Rashmi HB, Rao NH, Ilyas SM (2009) Nanotechnology and agriculture in India: The second green revolution?; Presented at the OECD conference on “Potential environmental benefits of nanotechnology: fostering safe innovation-led growth” Session 7. Agricultural nanotechnology, Paris, France. July 15–17, 2009

    Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28(5):775–785. https://doi.org/10.1080/13102818.2014.960739

    Article  Google Scholar 

  • Khodakovskaya ME, Mahmood DM, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  Google Scholar 

  • Khosravi-Darani K, Pardakhty A, Honarpisheh H, Rao VSNM, Mozafari MR (2007) The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy. Micron 38(8):804–818

    Article  CAS  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78

    CAS  Google Scholar 

  • Kumar R, Sharon M, Choudhary AK (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2:83–92

    Google Scholar 

  • Kuzma J (2007) Moving forward responsibly: oversight for the nanotechnology-biology interface. J Nanopart Res 9:165–182

    Article  Google Scholar 

  • Kuzma J, VerHage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Project on Emerging Nanotechnologies, Washington, DC

    Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichum species In vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  Google Scholar 

  • Lauterwasser C (2005) Small sizes that matter: opportunities and risks of nanotechnologies. Report in cooperation with the OECD International Futures Programme. http://www.oecd.org/dataoecd/32/1/44108334.pdf

  • Lee WM, An YJ, Yoon H, Kwbon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921

    Article  CAS  Google Scholar 

  • Lewinski N (2005) Nanotechnology policy and environmental regulatory issues. J Eng Public Policy 9:1–37

    Google Scholar 

  • Li YH, Dinga J, Luanb Z, Dia Z, Zhua Y, Xua C, Wu D, Wei B (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon [Online] 41(14):2787–2792. Available: http://linkinghub.elsevier.com/retrieve/pii/S0008622303003920

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. A review. Sci Total Environ 514:131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104

    Article  CAS  Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as superior sorbent for dioxin removal. J Am Chem Soc [Online] 123(9):2058–2059. Available: www.ncbi.nlm.nih.gov/pubmed/11456830

    Article  CAS  Google Scholar 

  • Lowry GV (2007) Nanomaterials for groundwater remediation. In: Wiesner MR, Bottero J (eds) Environmental nanotechnology. The McGraw-Hill Companies, New York, pp 297–336

    Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172. (Chinese Journal)

    CAS  Google Scholar 

  • Madou MJ (1997) Fundamentals of microfabrication. CRC Press, Boca Raton. (Graduate level introduction to microfabrication)

    Google Scholar 

  • Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR (2016) Influence of metal nanoparticles (NPs) on seed germination and yield of forage oat (Avena sativa) and berseem (Trifolium alexandrinum). PNAS India Biol Sci B. https://doi.org/10.1007/s40011-016-0796-x

    Article  CAS  Google Scholar 

  • Maity A, Natarajan N, Pastor M, Vijay D, Gupta CK, Wasnik VK, Ghosh PK (2018) Nanoparticles influence seed germination traits and seed pathogen infection rate in forage sorghum (Sorghum bicolor) and cowpea (Vigna unguiculata). Indian J Exp Biol 56:363–372

    CAS  Google Scholar 

  • Mao X, Yang L, Su XL, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185

    Article  CAS  Google Scholar 

  • Maysinger D (2007) Nanoparticles and cells: good companions and doomed partnerships. Org Biomol Chem 5:2335–2342

    Article  CAS  Google Scholar 

  • McMurray TA, Dunlop P, Byrne J (2006) The photocatalytic degradation of atrazine on nanoparticulate TiO2 films. J Photochem Photobiol A Chem 182:43–51. https://doi.org/10.1016/j.jphotochem.2006.01.010

    Article  CAS  Google Scholar 

  • Miao AJ, Quigg A, Schwehr K, Xu C, Santschi P (2007) Engineered silver nanoparticles (ESNs) in coastal marine environments: bioavailability and toxic effects to the phytoplankton Thalassiosira weissflogii. 2nd International conference on the environmental effects of nanoparticles and nanomaterials, 24–25th September, London UK

    Google Scholar 

  • Milani N, McLaughlin MJ, Stacey SP, Kirkby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60:3991–3998

    Article  CAS  Google Scholar 

  • Moraru CI, Panchapakesan CP, Quingrong H, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57:24–29

    Google Scholar 

  • Morris J, Willis J, De Martinis D, Hansen B, Laursen H, Sintes JR, Kearns P, Gonzalez M (2011) Science policy considerations for responsible nanotechnology decisions. Nat Nanotechnol 6(2):73–77

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture prospects and constraints. Nanotechnol Sci Appl 7:63–71. Available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4130717/

  • Murashov V, Howard J (2009) Essential features for proactive risk management. Nat Nanotechnol 4(8):467–470

    Article  CAS  Google Scholar 

  • Musante C, White JC (2010) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol. https://doi.org/10.1002/tox.20667

    Article  CAS  Google Scholar 

  • Naderi MR, Danesh-Sharaki A (2013) Nanofertilizers and their role in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • ObservatoryNANO FP7, European nanotechnology landscape report, 2011. http://www.scor.com/en/sgrc/pac/motor/item/1327-european-nanotechnology-landscape-report.html

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  Google Scholar 

  • Opara LU (2002) Agricultural Engineering education and research in knowledge-based economy. In: Kosutic S (ed) Proceedings of the 30th international symposium on agricultural engineering, Zagreb, Croatia, pp 33–46

    Google Scholar 

  • Otto M, Floyd M, Bajpai S (2008) Nanotechnology for site remediation. Remediat J [Online] 19(1):99–108

    Article  Google Scholar 

  • Ozimek L, Pospiech E, Narine S (2010) Nanotechnologies in food and meat processing. Acta Sci Pol Technol Aliment 9(4):401–412

    CAS  Google Scholar 

  • Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B (2005) Ceria nanoparticles supported nanotubes for removal of arsenate in water. Mater Lett [Online] 59(4):399–403. Available: http://linkinghub.elsevier.com/retrieve/pii/S0167577X04007384

    Article  CAS  Google Scholar 

  • Pinto RJ, Almeida A, Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Trindade T (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B: Biointerfaces 103:143–148

    Article  CAS  Google Scholar 

  • Prasad TNVV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Prasanna BM (2007) Nanotechnology in Agriculture. In Parsad R, Gupta VK, Bhar LM, Bhatia VK (ed) Advances in data analytical techniques: module- VI. Indian Agricultural Statistics Research Institute (I.C.A.R.), Library Avenue, New Delhi – 11001. http://www.iasri.res.in/ebook/EBADAT/6-Other%20Useful%20Techniques/10-nanotech_in_Agriculture__BM_Prasanna__1.2.2007.pdf

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173:51–57

    Article  CAS  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) J Biomat Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solutions by carbon nanotubes: a review. Sep Purif Technol [Online] 58(1):224–231. Available: https://linkinghub.elsevier.com/retrieve/pii/S1383586606004163

    Article  CAS  Google Scholar 

  • Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730

    Article  CAS  Google Scholar 

  • Rivas GA, Miscoria SA, Desbrieres J, Berrera GD (2006) New biosensing platforms based on the layer-by-layer self-assembling polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes. Talanta 71(1):270–275

    Article  CAS  Google Scholar 

  • Roghayyeh SMS, Mehdi TS, Rauf SS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Sci Biol 2:112–113

    Article  Google Scholar 

  • Rohith RS (2015) Precision farming using Nano based wireless sensor network. Int J Eng Res Gen Sci 3(2):343–350

    Google Scholar 

  • Rupani V, Kargathara S, Sureja J (2015) A review on wireless nanosensor networks based on electromagnetic communication. Int J Comput Sci Inf Technol 6(2):1019–1022

    Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  Google Scholar 

  • Satterfield T, Kandlikar M, Beaudrie CE, Conti J, Harthorn BH (2009) Anticipating the perceived risk of nanotechnologies. Nat Nanotechnol 4(11):752–758

    Article  CAS  Google Scholar 

  • Scheufele DA, Corley EA, Shih TJ, Dalrymple KE, Ho SS (2009) Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nat Nanotechnol 4(2):91–94

    Article  CAS  Google Scholar 

  • Scott NR (2007) Nanoscience in veterinary medicine. Vet Res Commun 31(Suppl. 1):139–144

    Article  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:22–44

    Google Scholar 

  • Seo Y, Cho J, Jeong H, Yim T, Cho K, Lee T (2011) Enhancement of antifungal activity of anthracnose in pepper by nanoparticles of thiamine di-lauryl sulfate. Korean J Med Crop Sci 19:198–240

    Article  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Siegrist M, Stampfli N, Kastenholz H, Keller C (2008) Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging. Appetite 51(2):283–290

    Article  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Mahendra Rai, Caue Ribeiro, Luiz Mattoso,·Nelson Duran (ed) Nanotechnologies in food and agriculture pp 81–101

    Google Scholar 

  • Srinivasan R, Maity A, Singh KK, Ghosh PK, Kumar S, Srivastava MK, Radhakrishna A, Srivastava R, Kumari B (2017) Influence of copper oxide and zinc oxide nanoparticles on fodder cowpea and soil microbiological properties. Range Manag Agrofor 38(2):208–214

    Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insect. Pest Manag Sci 66(6):577–579

    CAS  Google Scholar 

  • Stanovich KE, West RF (2008) On the relative independence of thinking biases and cognitive ability. J Pers Soc Psychol 94(4):672

    Article  Google Scholar 

  • Theron J, Moraru JA, Cloete TE (2008) Nanotechnology and Water Treatment: Applications and Emerging Opportunities. Crit Rev Microbiol 34(1):43–69. https://doi.org/10.1080/10408410701710442. ISSN 1040-841X. Retrieved 2014-07-29

    Article  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P (2002) Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning. Oxford University Press, Oxford, pp 21–35

    Google Scholar 

  • Torney F, Trewyn BG, Lin VS-Y, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  Google Scholar 

  • Trenkel ME (1997) Controlled-release and stabilized fertilizers in agriculture. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Ubbink J, Kruger J (2006) Physical approaches for the delivery of active ingredients in foods. Trends Food Sci Technol 17:244–254

    Article  CAS  Google Scholar 

  • Vamvakaki V, Chaniotakis NA (2007) Biosens. Bioelectronics 22:2848–2853

    Article  CAS  Google Scholar 

  • Varma R, Nadagouda MN (2009) Risk reduction vie greener synthesis of noble metal nanostructures and nano composites. Environ Secur [Online] 3:209–217. Available: http://www.springerlink.com/content/l3577386k6q12328/

    Google Scholar 

  • Veronica N, Tulasi G, Thatikunta R, Reddy NS (2015) Role of Nano fertilizers in agricultural farming. Int J Environ Sci Technol 1(1):1–3

    Google Scholar 

  • Vettiger P, Cross G, Despont M, Dreschler U, Durig U, Gotsmann B, Haberle W, Lantz MA, Rothuizen HE, Stutz R, Binnig GK (2002) The “millipede” – nanotechnology entering data storage. IEEE Trans Nanotechnol 1(1):39–55

    Article  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228

    Article  CAS  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Wen HW, Borejsza-Wysocki W, DeCory TR, Baeumner AJ, Durst RA (2005) A novel extraction method for peanut allergenic proteins in chocolate and their detection by liposome-based lateral flow assay. Eur Food Res Technol 221:564–569

    Article  CAS  Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  Google Scholar 

  • Zhang WX, Elliot DW (2006) Applications of iron nanoparticle in ground water remediation. Remed J [Online] 16(2):7–21. Available: http://onlinelibrary.wiley.com/doi/10.1002/rem.20078/abstract

    Article  Google Scholar 

  • Zhang L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 106:279–297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pramanik, P., Krishnan, P., Maity, A., Mridha, N., Mukherjee, A., Rai, V. (2020). Application of Nanotechnology in Agriculture. In: Dasgupta, N., Ranjan, S., Lichtfouse, E. (eds) Environmental Nanotechnology Volume 4. Environmental Chemistry for a Sustainable World, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-26668-4_9

Download citation

Publish with us

Policies and ethics

Navigation