Fluid and Electrolytes

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

The physiologic principles that provide the basis for fluid therapy are reviewed. The application of these principles to clinical fluid management in the surgical patient is outlined. The relationship between disorders of water balance and sodium metabolism as well as the physiology and management of disorders of sodium, potassium, calcium, magnesium, and phosphorus metabolism is delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cosnett JE. The origins of intravenous fluid therapy. Lancet. 1989;1(8641):768–71.

    CAS  PubMed  Google Scholar 

  2. Sabiston DC. The fundamental contributions of Alfred Blalock to the pathogenesis of shock. Arch Surg. 1995;130(7):736–7.

    PubMed  Google Scholar 

  3. Ritz P, Vol S, Berrut G, Tack I, Arnaud MJ, Tichet J. Influence of gender and body composition on hydration and body water spaces. Clin Nutr. 2008;27:740–6.

    CAS  PubMed  Google Scholar 

  4. Edelman IS, Leibman J. Anatomy of body water and electrolytes. Am J Med. 1959;27:256–77.

    CAS  PubMed  Google Scholar 

  5. Wait RB, Alouidor R. Fluids, electrolytes, and acid–base balance. In: Mulholland MW, Lillemoe KD, Doherty GM, Maier RV, Simeone DM, Upchurch GR, editors. Greenfield’s surgery: scientific principles and practice. Philadelphia: Lippincott Williams & Wilkins; 2011. p. 189–213.

    Google Scholar 

  6. Shires T, Williams J, Brown F. Acute changes in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Shires GT. Shock and metabolism. Surg Gynecol Obstet. 1967;124:803–10.

    Google Scholar 

  8. Kaye AD, Riopelle JM. Intravascular fluid and electrolyte physiology. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 1705–38.

    Google Scholar 

  9. Chan STF, Kapadia CR, Johnson AW, Radcliffe AG, Dudley HAF. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg. 1983;70:36–9.

    CAS  PubMed  Google Scholar 

  10. Brandstrup B, Svensen C, Engquist A. Hemorrhage and operation cause a contraction of the extracellular space needing replacement–evidence and implications? A systematic review. Surgery. 2006;139:419–32.

    PubMed  Google Scholar 

  11. Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol. 2006;20:265–83.

    PubMed  Google Scholar 

  12. Kasiewicz J, Puyana JC. Resuscitation of hypovolemic shock. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Saunders; 2011. p. 1395–8.

    Google Scholar 

  13. Baldwin AL, Thurston G. Mechanics of endothelial cell architecture and vascular permeability. Crit Rev Biomed Eng. 2001;29(2):247–78.

    CAS  PubMed  Google Scholar 

  14. Emerson TE. Unique features of albumin: a brief review. Crit Care Med. 1989;17(7):690–4.

    PubMed  Google Scholar 

  15. Bent-Hansen L. Whole body capillary exchange of albumin. Acta Physiol Scand Suppl. 1991;603:5–10.

    CAS  PubMed  Google Scholar 

  16. Rose BD, Post TW. Regulation of plasma osmolality. In: Rose BD, Post TW, editors. Clinical physiology of acid–base and electrolyte disorders. New York: McGraw-Hill; 2001. p. 285–98.

    Google Scholar 

  17. Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3(1):5–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Carbrey JM, Agre P. Discovery of the aquaporins and development of the field. Handb Exp Pharmacol. 2009;90:3–28.

    Google Scholar 

  19. Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys. 2006;39(4):361–96.

    CAS  PubMed  Google Scholar 

  20. Fu D, Lu M. The structural basis of water permeation and proton exclusion in aquaporins. Mol Membr Biol. 2007;24(5–6):366–74.

    CAS  PubMed  Google Scholar 

  21. Fenton RA, Moeller HB. Recent discoveries in vasopressin-regulated aquaporin-2 trafficking. Prog Brain Res. 2008;170:571–9.

    CAS  PubMed  Google Scholar 

  22. Moen MD, Keating GM. Intravenous conivaptan. Am J Cardiovasc Drugs. 2008;8(5):341–8.

    CAS  PubMed  Google Scholar 

  23. Metzger BL, DeVita MV, Michelis MF. Observations regarding the use of the aquaretic agent conivaptan for treatment of hyponatremia. Int Urol Nephrol. 2008;40:725–30.

    CAS  PubMed  Google Scholar 

  24. Lee CY, Burnett JC. Natriuretic peptides and therapeutic implications. Heart Fail Rev. 2007;12:131–42.

    CAS  PubMed  Google Scholar 

  25. McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab. 2005;16:469–77.

    CAS  PubMed  Google Scholar 

  26. Wait RB, Kahng KU. Renal failure complicating obstructive jaundice. Am J Surg. 1989;157:256–63.

    CAS  PubMed  Google Scholar 

  27. Remuzzi G, Benigni A. Endothelins in the control of cardiovascular and renal function. Lancet. 1993;342:589–93.

    CAS  PubMed  Google Scholar 

  28. Bachmann S, Mundel P. Nitric oxide and the kidney: synthesis, localization, and function. Am J Kidney Dis. 1994;24(1):112–29.

    CAS  PubMed  Google Scholar 

  29. Kaplan LJ, Frangos S. Clinical Review: Acid–base abnormalities in the intensive care unit. Critical Care. 2005;9(2):198–203.

    PubMed Central  PubMed  Google Scholar 

  30. Kramer GC. Hypertonic resuscitation: physiologic mechanisms and recommendations for trauma care. J Trauma. 2003;54(5 Suppl):S89–99.

    PubMed  Google Scholar 

  31. Finfer S, Bollomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(2):2247–56.

    CAS  PubMed  Google Scholar 

  32. Vincent JL, Sakr Y, Reinhart K. Is albumin administration in the acutely ill associated with increased mortality? Results of the SOAP study. Crit Care. 2005;96(6):R745–54.

    Google Scholar 

  33. Schortgen F, Girou E, Deye N, Brochard L. The risk associated with hyperoncotoic colloids in patients with shock. Intensive Care Med. 2008;34(12):2157–68.

    PubMed  Google Scholar 

  34. Hartmann AF, Senn MJ. Studies in the metabolism of sodium r-lactate. III. Response of human subjects with liver damage, disturbed water and mineral balance, and renal insufficiency to the intravenous injection of sodium r-lactate. J Clin Invest. 1932;11:345–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Cordell AR. Milestones in the development of cardioplegia. Ann Thorac Surg. 1995;60:793–6.

    CAS  PubMed  Google Scholar 

  36. Rhee P, Burris D, Kaufmann C, Pikoulis M, Austin B, Ling G, et al. Lactated Ringer’s solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma. 1998;44(2):313–9.

    CAS  PubMed  Google Scholar 

  37. Deb S, Martin B, Sun L, Ruff P, Burris D, Rich N, et al. Resuscitation with lactated Ringer’s solution in rats with hemorrhagic shock induces immediate apoptosis. J Trauma. 1999;46(4):582–8.

    CAS  PubMed  Google Scholar 

  38. Cai B, Chen F, Lin X, Miller E, Szabo C, Deithch EA, et al. Anti-inflammatory adjuvant in resuscitation fluids improves survival in hemorrhage. Crit Care Med. 2009;37(3):860–8.

    CAS  PubMed  Google Scholar 

  39. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomized controlled trials. BMJ. 1998;317(7153):235–40.

    Google Scholar 

  40. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2004;4:CD001208.

    Google Scholar 

  41. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    CAS  PubMed  Google Scholar 

  42. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    CAS  PubMed  Google Scholar 

  43. Bayer O, Reinhart K, Kohl M, Kabisch B, Marshall J, Sakr Y, et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012;40:2543–51.

    CAS  PubMed  Google Scholar 

  44. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2, CD000567.

    PubMed  Google Scholar 

  45. Wait RB, Kahng KU, Mustafa IA. Fluid, electrolytes, and acid–base balance. In: Greenfield LJ, Mulhholland MW, Oldham KT, Zelenock GB, Lillemoe KD, editors. Surgery: scientific principles and practice. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 244–69.

    Google Scholar 

  46. Todd SR. Disorders of water balance. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Saunders; 2011. p. 841–9.

    Google Scholar 

  47. Upadhyay A, Jabber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5.

    Google Scholar 

  48. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–7.

    CAS  PubMed  Google Scholar 

  49. Londono MC, Guevera M, Rimola A, Navasa M, Tauara P, Mas A, et al. Hyponatremia impairs early post transplantation outcome in patients with cirrhosis undergoing liver transplantation. Gastroenterology. 2006;130:1135–43.

    PubMed  Google Scholar 

  50. Zilberberg MD, Exuzides A, Spalding J, Foreman A, Jones AG, Colby C, et al. Hyponatremia and hospital outcomes among patients with pneumonia: a retrospective cohort study. BMC Pulm Med. 2008;8:16. PubMed PMID: 18710521.

    PubMed Central  PubMed  Google Scholar 

  51. McIwaine JK, Corwin HL. Hypernatremia and hyponatremia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Saunders; 2011. p. 53–5.

    Google Scholar 

  52. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.

    CAS  PubMed  Google Scholar 

  53. Schrier RW. Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephritic syndrome, cirrhosis, and pregnancy (2). N Eng J Med. 1988;319(17):1127–34.

    CAS  Google Scholar 

  54. Schrier RW. Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephritic syndrome, cirrhosis, and pregnancy (1). N Eng J Med. 1988;319(16):1065–72.

    CAS  Google Scholar 

  55. Sedlaceck M, Schoolwerth AC, Remillard BD. Electrolyte disturbances in the intensive care unit. Semin Dial. 2006;19(6):496–501.

    Google Scholar 

  56. Swart RM, Hoorn EJ, Betjes MG, Zieste R. Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Physiol. 2011;118:45–51.

    PubMed  Google Scholar 

  57. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med. 1997;102:67–77.

    CAS  PubMed  Google Scholar 

  58. Ayus JC, Arieff AI. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA. 1999;81:2299–304.

    Google Scholar 

  59. Stems RH. Severe hyponatremia: the case for conservative management. Crit Care Med. 1992;20:534–9.

    Google Scholar 

  60. Cohen BJ, Jordan MH, Chapin SD, Cape B, Laureno R. Pontine myelinolysis after correction of hyponatremia during burn resuscitation. J Burn Care Rehabil. 1991;12:153–6.

    CAS  PubMed  Google Scholar 

  61. Laurene R. Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol. 1983;13:232–42.

    Google Scholar 

  62. Laurene R, Karp BI. Myelinolysis after correction of hyponatremia. Ann Intern Med. 1997;126:57–62.

    Google Scholar 

  63. Laureno R, Karp BI. Pontine and extrapontine myelinolysis following rapid correction of hyponatraemia. Lancet. 1988;1:1439–41.

    CAS  PubMed  Google Scholar 

  64. Karp BI, Laureno R. Pontine and extrapontine myelinolysis: a neurologic disorder following rapid correction of hyponatremia. Medicine. 1993;72:359–73.

    CAS  PubMed  Google Scholar 

  65. Stems RH. Neurological deterioration following treatment for hyponatremia. Am J Kidney Dis. 1989;13:434–7.

    Google Scholar 

  66. Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol. 1994;4:1522–30.

    CAS  PubMed  Google Scholar 

  67. Stems RH, Riggs JE, Schochet Jr SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;14:1535–42.

    Google Scholar 

  68. Lehrich RW, Greenberg A. Hyponatremia and the use of vasopressin receptor antagonists in critically ill patients. J Intensive Care Med. 2012;27(4):207–18.

    PubMed  Google Scholar 

  69. Adrogué HJ, Madias NE. Mechanisms of disease: sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356:1966–78.

    PubMed  Google Scholar 

  70. Naparstek Y, Gutman A. Case Report: Spurious hypokalemia in myeloproliferative disorders. Am J Med Sci. 1984;288:175–7.

    CAS  PubMed  Google Scholar 

  71. Zanotti-Cavazzoni S, Dellinger RP. Hyperkalemia and hypokalemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Saunders; 2011. p. 56–9.

    Google Scholar 

  72. Slovis C, Jenkins R. ABC of clinical electrocardiography: conditions not primarily affecting the heart. BMJ. 2002;324:1320–3.

    PubMed Central  PubMed  Google Scholar 

  73. Schulman M, Narins RG. Hypokalemia and cardiovascular disease. Am J Cardiol. 1990;65:4E–9.

    CAS  PubMed  Google Scholar 

  74. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339:451–8.

    CAS  PubMed  Google Scholar 

  75. Whang R, Welt LA. Observations in experimental magnesium depletion. J Clin Invest. 1963;42:305–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Wong NLM, Sutton RA, Navichak V, Quame GA, Dirks JH. Enhanced distal absorption of potassium by magnesium-deficient rats. Clin Sci. 1985;69:626–39.

    Google Scholar 

  77. Burnell JM, Scribner BH, Uyeno BT, Villamil MF. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest. 1956;35:935–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Hassan M, Cooney RN. Hypocalcemia and hypercalcemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Saunders; 2011. p. 65–7.

    Google Scholar 

  79. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia. A pervasive metabolic abnormality in the critically ill. Am J Kidney Dis. 2001;37:689–98.

    CAS  PubMed  Google Scholar 

  80. Zaloga GP. Ionized hypocalcemia during sepsis. Crit Care Med. 2000;28:266–8.

    CAS  PubMed  Google Scholar 

  81. Müller B, Becker KL, Kränzlin M, Schächinger H, Huber PR, Nylèn ES, et al. Disordered calcium homeostasis of sepsis: association with calcitonin precursors. Eur J Clin Invest. 2000;30:823–31.

    PubMed  Google Scholar 

  82. Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008;65(4):951–60.

    PubMed  Google Scholar 

  83. Zaloga GP. Hypocalcemia in critically ill patients. Crit Care Med. 1992;20:251–61.

    CAS  PubMed  Google Scholar 

  84. Aguilera IM, Vaughan RS. Calcium and the anaesthetist. Anaesthesia. 2000;55:779–90.

    CAS  PubMed  Google Scholar 

  85. Carlstedt F, Lind L. Hypocalcemic syndromes. Crit Care Clin. 2001;17:139–53.

    CAS  PubMed  Google Scholar 

  86. Strubelt O, Diederich KW. Experimental investigations of the antidotal treatment of nifedipine overdosage. J Toxicol Clin Toxicol. 1986;24(2):135–49.

    CAS  PubMed  Google Scholar 

  87. Tai YT, Lo CW, Chow WH, Cheng CH. Successful resuscitation and survival following massive overdose of metoprolol. Br J Clin Pract. 1990;44:746–7.

    CAS  PubMed  Google Scholar 

  88. Forster J, Querusio L, Burchard KW, Gann DS. Hypercalcemia in critically ill surgical patients. Ann Surg. 1985;202:512–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Melmed S, Polonsky K, Larsen PR, Kronenberg H, editors. Williams textbook of endocrinology. Philadelphia: W.B. Saunders; 2011. p. 1237–304.

    Google Scholar 

  90. Johansson M. Weak relationship between ionized and total magnesium in serum of patients requiring magnesium status. Biol Trace Elem Res. 2007;115(1):13–21.

    CAS  PubMed  Google Scholar 

  91. Ben Rayana MC, Burnett RW, Covington AK, D’Orazio P, Fogh-Andersen N, Jacobs E, et al. IFCC guideline for sampling, measuring and reporting ionized magnesium in plasma. Clin Chem Lab Med. 2008;46(1):21–6.

    CAS  PubMed  Google Scholar 

  92. Hassan M, Cooney RN. Hypomagnesemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care medicine. Philadelphia: Elsevier Saunders; 2011. p. 63–4.

    Google Scholar 

  93. Norhona JL, Matuschak GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med. 2002;28:667–79.

    Google Scholar 

  94. Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocrin Metab Disord. 2003;4:195–206.

    Google Scholar 

  95. Dacey MJ. Hypomagnesemic disorders. Crit Care Clin. 2001;17:155–73.

    CAS  PubMed  Google Scholar 

  96. Fox C, Ramsoomair D, Carter C. Magnesium: its proven and potential clinical significance. South Med J. 2001;94:1195–201.

    CAS  PubMed  Google Scholar 

  97. Zalman AS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7):1616–22.

    Google Scholar 

  98. Daily WH, Tonnesen AS, Allen SJ. Hypophosphatemia: incidence, etiology and prevention in the trauma patient. Crit Care Med. 1990;18:1210–4.

    CAS  PubMed  Google Scholar 

  99. Vanneste J, Hage J. Acute severe hypophosphatemia mimicking Wernicke’s encephalopathy. Lancet. 1986;1(8471):44.

    CAS  PubMed  Google Scholar 

  100. Singhal PC, Kumar A, Desroches L, Gibbons N, Mattana J. Prevalence and predictors of rhabdomyolysis in patients with hypophosphatemia. Am J Med. 1992;92:458–64.

    CAS  PubMed  Google Scholar 

  101. Aubier M, Murciano D, Lecocguic Y, Viires N, Jacquens Y, Squara P, Pariente R. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Eng J Med. 1985;313:420–4.

    CAS  Google Scholar 

  102. Newman JH, Neff TA, Ziporin P. Acute respiratory failure associated with hypophosphatemia. N Engl J Med. 1977;296(19):1101–3.

    CAS  PubMed  Google Scholar 

  103. Bollaert PE, Levy B, Nace L, Laterre PF, Larcan A. Hemodynamic and metabolic effects of rapid correction of hypophosphatemia in patients with septic shock. Chest. 1995;107(6):1698–701.

    CAS  PubMed  Google Scholar 

  104. Vachvanichsanong P, Maipang M, Dissaneewate P, Wongchanchailert M, Laosombat V. Severe hyperphosphatemia following acute tumor lysis syndrome. Med Pediatr Oncol. 1995;24:63–6.

    CAS  PubMed  Google Scholar 

  105. Sutlers M, Gaboury CL, Bennett WM. Severe hyperphosphatemia and hypocalcemia: a dilemma in patient management. J Am Soc Nephrol. 1996;7(10):2056–61.

    Google Scholar 

  106. Bauer C, Dhillon A. Hypophosphatemia and hyperphosphatemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Saunders; 2011. p. 60–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Maerz MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhattacharya, B., Maerz, L.L. (2014). Fluid and Electrolytes. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1121-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1121-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1120-2

  • Online ISBN: 978-1-4939-1121-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation