Is the Na+-Activated NADH-Quinone-Acceptor Oxidoreductase in Marine Bacteria and Moderate Halophiles a Primary Electrogenic Na+ Pump?

  • Chapter
General and Applied Aspects of Halophilic Microorganisms

Part of the book series: NATO ASI Series ((NSSA,volume 201))

  • 165 Accesses

Abstract

Tokuda and Unemoto observed that a concentration of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) which completely collapsed the membrane potential of the marine bacterium Vibrio alginolyticus 138-2 and the moderate halophile Vibrio costicola at pH 7 only partially and transiently collapsed it at pH 8.5. They also found that a concentration of CCCP which inhibited Na+ extrusion from and Na+ dependent amino acid uptake by V. alginolyticus 138-2 at pH 7.0 did not do so at pH 8.5. To explain these observations they proposed the existence of a primary electrogenic Na+ extrusion system which was uncoupler resistant and functioned best at alkaline pH. The organisms examined have been shown to have a Na+-activated NADH:quinone-acceptor oxidoreductase with a pH optimum at 8. Since mutants of V. alginolyticus 138-2 lacking this enzyme were sensitive to CCCP at pH 8.5, it was concluded that the enzyme functions as the proposed electrogenic Na+ pump. Hamaide et al., however, demonstrated Na+/H+ antiport activity at pH 8.5 inV. costicola which was sensitive to the protonophores CCCP and 3,3’,4’,4-tetrachlorosalicylanilide (TCS). MacLeod et al. found that CCCP inhibited Na+-dependent amino acid uptake into a number of marine bacteria and V. costicola at pH 8.5 if the concentration was increased sufficiently while TCS was almost as inhibitory in this capacity at pH 8.5 as at 7. Relatively low concentrations of TCS collapsed the membrane potential of V. alginolyticus 118 at pH 8.5 and prevented Na+ extrusion from the cells. These findings suggested that NADH oxidation at pH 8.5 in this organism and V. costicola leads to the extrusion of protons which in turn cause Na+ to be pumped out of the cells via a Na+/H+ antiporter. Reasons for the differences in the conclusions reached are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. L. Reichelt and P. Baumann, Arch. Microbiol.97: 329 (1974)

    Article  PubMed  CAS  Google Scholar 

  2. G. R. Drapeau and R. A. MacLeod, Biochem. Biophys. Res. Comm.12: 111 (1963)

    Article  Google Scholar 

  3. R. Droniuk, P. T. S. Wong, G. Wisse and R. A. MacLeod, Appl. Environ. Microbiol.53: 1487 (1987)

    PubMed  CAS  Google Scholar 

  4. Y. Kakinuma and T. Unemoto, J. Bacteriol.163: 1293 (1985)

    PubMed  CAS  Google Scholar 

  5. H. M. Hassan and R. A. MacLeod, J. Bacteriol.121: 160 (1975)

    PubMed  CAS  Google Scholar 

  6. T. Unemoto, M. Hayashi and M. Hayashi, J. Biochem. (Tokyo)82: 1389 (1977)

    CAS  Google Scholar 

  7. G. Khanna, L. DeVoe, L. Brown, D. F. Niven and R. A. MacLeod, J. Bacteriol.157: 59 (1984)

    PubMed  CAS  Google Scholar 

  8. G. D. Sprott, J. P. Drozdowski, E. L. Martin and R. A. MacLeod, Can. J. Microbiol.21: 43 (1975)

    Article  PubMed  CAS  Google Scholar 

  9. J. Thompson and R. A. MacLeod J. Biol. Chem. 248: 7106 (1973)

    CAS  Google Scholar 

  10. T. Unemoto and M. Hayashi, J. Biochem. (Tokyo)85: 1461 (1979)

    CAS  Google Scholar 

  11. H. Tokuda and T. Unemoto, Biochem. Biophys. Res. Comm.102: 265 (1981)

    Article  PubMed  CAS  Google Scholar 

  12. H. Tokuda, Biochem. Biophys. Res. Comm.114: 113 (1983)

    Article  PubMed  CAS  Google Scholar 

  13. H. Tokuda and T. Unemoto, J. Biol. Chem.259: 7785 (1984)

    PubMed  CAS  Google Scholar 

  14. H. Tokuda and T. Unemoto, J. Bacteriol.156: 636 (1983)

    PubMed  CAS  Google Scholar 

  15. T. Tsuchiya and S. Shinoda J. Bacterial. 162: 794 (1985)

    CAS  Google Scholar 

  16. S. Ken-Dror, R. Preger and Y. Avi-Dor, Arch. Biochim. Biophys.244: 122 (1986)

    Article  CAS  Google Scholar 

  17. P. A. Dibrov, V. S. Kostyrko, R. L. Lazarova, V. P. Skulachev and I. A. Smirnova, Biochim. Biophys. Acta850: 449 (1986)

    Article  PubMed  CAS  Google Scholar 

  18. P. Dimroth and A. Thomer, Arch. Microbiol.151: 439 (1989)

    Article  PubMed  CAS  Google Scholar 

  19. V. Müller, C. Winner and G. Gottschalk, Eur. J. Biochem.178: 519 (1988)

    Article  PubMed  Google Scholar 

  20. F. Hamaide, D. J. Kushner and G. D. Sprott, J. Bacteriol.161: 681 (1985)

    PubMed  CAS  Google Scholar 

  21. T. A. Krulwich, Biochim. Biophys. Acta726: 245 (1983)

    Article  PubMed  CAS  Google Scholar 

  22. F. Hamaide, G. D. Sprott, and D. J. Kushner, Biochim. Biophys. Acta766: 77 (1984)

    Article  PubMed  CAS  Google Scholar 

  23. R. A. MacLeod, G. A. Wisse and F. L. Stejskal, J. Bacteriol.170: 4330 (1988)

    PubMed  CAS  Google Scholar 

  24. H. Tokuda, Methods Enzymol. 125: 520 (1986)

    Article  PubMed  CAS  Google Scholar 

  25. S. G. A. McLaughlin and J. P. Dilger, Physiol. Rev.60: 825 (1980)

    PubMed  CAS  Google Scholar 

  26. H. Tokuda and T. Unemoto, J. Biol. Chem.257: 10007 (1982)

    PubMed  CAS  Google Scholar 

  27. U. Hopfer, A. L. Lehninger and W. J. Lennarz, J. Membr. Biol.3: 142 (1970)

    Article  CAS  Google Scholar 

  28. R. J. Lewis, E. Kaback and T. A. Krulwich, J. Gen. Microbiol.128: 427 (1982)

    CAS  Google Scholar 

  29. A. A. Guffanti and T. A. Krulwich, J. Biol. Chem.263: 14748 (1988)

    PubMed  CAS  Google Scholar 

  30. R. J. P. Williams, FEBS Lett. 85: 9 (1978)

    Article  PubMed  CAS  Google Scholar 

  31. F. Hamaide, D. J. Kushner and G. D. Sprott, J. Bacteriol.156: 537 (1983)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacLeod, R.A. (1991). Is the Na+-Activated NADH-Quinone-Acceptor Oxidoreductase in Marine Bacteria and Moderate Halophiles a Primary Electrogenic Na+ Pump?. In: Rodriguez-Valera, F. (eds) General and Applied Aspects of Halophilic Microorganisms. NATO ASI Series, vol 201. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3730-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3730-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6660-7

  • Online ISBN: 978-1-4615-3730-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation