Linear and Nonlinear Dynamics in the Development of Orientation Preference Maps

  • Conference paper
The Neurobiology of Computation
  • 121 Accesses

Abstract

The formation of feature-maps in the develo** visual cortex has become a central system for the study of cooperative phenomena in large neural networks, both theoretically[1, 2] and experimentally [3, 4]. With advanced optical imaging techniques [5, 6] it is now possible to monitor the activity of neural populations synchronously with a high spatial resolution. This kind of measurement should finally enable a comparison of experiment and mathematical theory in quantitative detail. In this contribution we start to outline the respective contributions of linear and nonlinear dynamics in the development of visual cortical maps, the different timescales, on which these qualitatively distinct processes take place and how their effects might be accessed experimentally in a quantitative fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Miller, K.D., Keller, J.B. & Stryker, M.P., Ocular Dominance Column Development: Analysis and Simulation, Science 245,605–615 (1989).

    Article  ADS  Google Scholar 

  2. Obermayer, K., Blasdel, G.G., & Schulten, K., Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps, Phys. Rev. A 45,7568–7589 (1992).

    Article  ADS  Google Scholar 

  3. Löwel, S., Singer, W., Selection of Intrinsic Horizontal Connections in the Visual Cortex by Correlated Neuronal Activity, Science 255,209–212 (1992).

    Article  ADS  Google Scholar 

  4. Yuste, R., Alejandro, P., Katz, L.C., Neuronal Domains in the Develo** Neocortex, Science 257,665–669 (1992).

    Article  ADS  Google Scholar 

  5. Grinvald, A., Lieke, E., Frostig, R.D., Gilbert, C.D. & Wiesel, T.N., Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature 324,361–364 (1986).

    Article  ADS  Google Scholar 

  6. Blasdel, G.G., Salama, G., Voltage-sensitive dyes reveal a modular organization in monkey striate cortex, Nature 321,579–585 (1986).

    Article  ADS  Google Scholar 

  7. Bonhoeffer, T., Grinvald, A., Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns, Nature 343,429–431 (1991).

    Article  ADS  Google Scholar 

  8. Wolf, F., Pawelzik, P., Geisel, T., Kim, D.-S., Bonhoeffer, T., Map structure from Pinwheel Position, in S. Gielen & B. KappenICANN ‘83: Proceedings of the International Conference on Artificial Neural Networks(Springer, London, 1993), p. 131–135.

    Google Scholar 

  9. Wolf, F., Pawelzik, P., Geisel, T., Kim, D.-S., Bonhoeffer, T., Optimal Smoothness of Orientation Preference Maps, in E. Marder, F.H. Eeckman & J. Bower (eds.)Computation and Neural Systems II(Kluwer, Boston, in press).

    Google Scholar 

  10. von der Malsburg, Ch., Self-Organisation of Orientation Sensitive Cells in the Striate Cortex, Biol. Cybern. 14,85–100 (1973).

    Google Scholar 

  11. Swindale, N.V., A model for the formation of orientation columns, Proc. R. Soc. London 215,211–230 (1982).

    Article  ADS  Google Scholar 

  12. Durbin, R., Mitchison, G., A dimension reduction framework for understanding cortical maps, Nature 343,644–647, (1990).

    Article  ADS  Google Scholar 

  13. Miller, K.D., A Model for the Development of Simple Cell Receptive Fields and the Ordered Arrangement of Orientation Columns Through Activity-Dependent Competition between ON- and OFF-Center Inputs, J. Neurosci.14,1 (1994).

    Google Scholar 

  14. Manneville, P.Dissipative Structures and Weak Turbulence(Academic Press, 1990).

    MATH  Google Scholar 

  15. Rojer, A.S., Schwartz, E.L., Cat and Monkey Cortical Columnar Patterns Modeled by Bandpass-Filtered 2D White Noise, Biol. Cybern. 62,381–391 (1990).

    Article  Google Scholar 

  16. Wörgötter, F., Niebur, E., Cortical column design: a link between the maps of preferred orientation and orientation tuning strength? Biol. Cybern.69(1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Wolf, F., Pawelzik, K., Geisel, T. (1995). Linear and Nonlinear Dynamics in the Development of Orientation Preference Maps. In: Bower, J.M. (eds) The Neurobiology of Computation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2235-5_59

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2235-5_59

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5940-1

  • Online ISBN: 978-1-4615-2235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation