Biotechnology in natural food colours: The role of bioprocessing

  • Chapter
Natural Food Colorants

Abstract

There has been much interest over the past decade in the use of biotechnology for the production of food additives. The demand for naturally obtained food additives would not in itself guarantee the employment of biotechnology in their production. It would have to compete with traditional agricultural sources of supply, which often have the advantages of being cheap and well established. The factor which could tip the balance in favour of biotechnology is concern in the food industry over the reliability of supply of agricultural sources of colours which can be subject to the vagaries of political instability and climate. This has caused the industry to look more favourably on biotechnology as a source of supply, which because of the high costs implicit in the necessary research and development might not otherwise seem so attractive. A working definition of biotechnology in the context of natural colours is provided. There are three main areas of biotechnology which it is hoped will produce the desired colours: plant cell tissue culture, microbial fermentation and enzyme and gene manipulation technology, all of which have been found to have advantages and disadvantages. The uncertain policies of regulatory agencies towards biotechnology are a major stumbling block. In spite of these difficulties the literature highlights a few successes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bell, E.R.J, and White, E.B. Int. Ind. Biotechnol. 9(3) (1989) 20–26.

    CAS  Google Scholar 

  2. Didriksen, C. Novel colouring agents. The Colour Conference, Leatherhead FRA (1994) pp. 81–91.

    Google Scholar 

  3. Kirsop, B. Chem & Ind. April (1981) 218.

    Google Scholar 

  4. Kempler, G.M. Adv. in App. Microbiol. 29 (1983) 29.

    Article  CAS  Google Scholar 

  5. Ilker, R. In-vitro pigment production: An alternative to color synthesis, Food Technol. 41(4) (1987) 70–72.

    CAS  Google Scholar 

  6. Hahlbrock, K. Biotechnology: Potentials & Limitations (S. Silver ed.) (1986) p. 241.

    Chapter  Google Scholar 

  7. Dougall, D.K. et al.Planta 149 (1980) 292.

    Article  CAS  Google Scholar 

  8. Kinnersley, A.M. et al.Planta 149 (1980) 200.

    Article  CAS  Google Scholar 

  9. Ozeki, Y. and Komamine, A. Plant Cell Tissue Organ Culture 5 (1985) 45–53.

    Article  CAS  Google Scholar 

  10. Hinderer, W. et al.Planta 160 (1984) 544.

    Article  CAS  Google Scholar 

  11. Ozeki, Y. et al. Plant Tissue Culture 1982 Proc, 5th Intl. Cong. Plant Tissue and Cell Culture (Fujuwara, A. ed.) (1982) 355.

    Google Scholar 

  12. Yamakawa, T. et al.Proc. 5th Intl. Cong. Plant Tissue and Cell Culture (Fujiwara, A. ed.) (1982) p. 273.

    Google Scholar 

  13. Zryd, J.P. et al. Proc. 5th Intl. Cong. Plant Tissue and Cell Culture (Fujiwara, A. ed.) (1982) p. 387.

    Google Scholar 

  14. Igarashi, Y. and Yuasa, M. Effects of ammonium and total nitrogen content in culture medium on shoot generation from calli in Saffron (Crocussativus L.), Plant Tissue Culture Letters 11(1) (1994) 61–64.

    Article  Google Scholar 

  15. Ilahi, I. et al.J. Plant Physiol. 128 (1987) 227–232.

    Article  CAS  Google Scholar 

  16. Isa, T. and Ogasawara, T. Japan. J. Breed. 40 (1988) 153–158.

    Google Scholar 

  17. Vasil, V. and Vasil, I.K. Cell Culture and Somatic Cell Genetics of Plants, Academic Press, Orlando (1984) pp. 36–42.

    Google Scholar 

  18. Lins, A.C.R. The tissue culture research on Urucum (Bixa orellana), Proceedings of the 1st International Symposium on Annatto, São Paulo (1991) pp. 193–195.

    Google Scholar 

  19. Lemos, O.F. et al. Propagation of Urucum in vitro, Proceedings of the 1st International Symposium on Annatto, SĂŁo Paulo (1991) p. 320.

    Google Scholar 

  20. Signs, M.W. and Flores, H.E. The biosynthetic potential of plant roots, Bio Essays 12(1) (1990) 7–13.

    CAS  Google Scholar 

  21. Vasil, I.K. Cell Culture and Somatic Cell Genetics of Plants, Academic Press (1987).

    Google Scholar 

  22. Knorr, D. Plant tissue culture for the production of naturally derived food ingredients, Food Technol. (1990) 71–79.

    Google Scholar 

  23. Yoon, H.Y. et al. Anthocyanin production by Daucus carota root cell culture in vitro, HortScience 27(6) (1992) 206.

    Google Scholar 

  24. Kim, C.H. et al. Enhanced anthocyanin production in hairy root culture of Daucus carota by fungal elicitation, HortScience 27(6) (1992) 206.

    Google Scholar 

  25. Cormier, F. et al. Effects of sucrose concentration on the accumulation of anthocyanins in grape (Vitis vinifera) cell suspension, Can. J. Bot. 68 (1990) 1822–1825.

    Article  CAS  Google Scholar 

  26. Chi Bao Do and Cormier, F. Effects of high ammonium concentrations on growth and anthocyanin formation in grape (Vitis vinifera L.) cell suspension cultured in a production medium, Plant Cell, Tissue and Organ Culture 27 (1991) 169–174.

    Article  Google Scholar 

  27. Callebaut, A. et al. Production of anthocyanins by cell cultures of Ajuga reptans, Med. Fac. Landbouw. Rijksuniv. Gent. 53(4a) (1988) 1713–15.

    CAS  Google Scholar 

  28. Callebaut, A. et al. Anthocyanins in cell cultures of Ajuga reptans, Phytochem., 29(7) (1990) 2153–2158.

    Article  CAS  Google Scholar 

  29. Nagarajan, Raj. P. et al. Optimization of anthocyanin yield in a mutated carrot cell line (Daucus carota) and its implications in large scale production, J. Ferm. & Bioeng., 68(2) (1989) 102–106.

    Article  CAS  Google Scholar 

  30. Chi Bao Do and Cormier, F. Accumulation of anthocyanins enhanced by a high osmotic potential in grape (Vitis vinifera L.) cell suspensions, Plant Cell Reports 9 (1990) 143–146.

    Article  CAS  Google Scholar 

  31. Masahito, Taya et al. Production and release of pigments by culture of transformed hairy root of red beet, J. Ferment. & Bioeng., 73(1) (1992) 31–36.

    Article  Google Scholar 

  32. Masahito, T. et al. Influence of medium constituents on enchancement of pigment production by batch culture of red beet hairy roots, J. Ferment. & Bioeng. 77(2) (1994) 215–217.

    Article  Google Scholar 

  33. Masahiro Kino-Oka et al. Culture of red beet hairy root in bioreactor and recovery of pigment released from the cells by repeated treatment of oxygen starvation, J. Chem. Eng. of Japan 25(5) (1992) 490–495.

    Article  Google Scholar 

  34. Nakajima, H. et al. Pigment synthesis by immobilised cultured cells of Lavandula vera and characterisation of a component of the pigments, Agri. Biol. Chem. 54(1) (1990) 53–59.

    Article  CAS  Google Scholar 

  35. Bianco-Colomas, J. and Hugues, M. Establishment and characterization of a betacyanin producing cell line of Amaranthus tricolor: inductive effects of light and cytokinin, J. Plant Physiol. 136 734–739.

    Google Scholar 

  36. Stafford, A. Enz. Microb. Technol. 8, (1986) 578.

    Article  CAS  Google Scholar 

  37. Collinge, M. Trends Biotechnol. 4(12) (1986) 299.

    Article  Google Scholar 

  38. Whitaker, R.J. et al. Biogeneration of Aromas, American Chemical Society, Washington DC (1987) p. 347.

    Google Scholar 

  39. Tudge, C. New Scientist, January (1984) 25.

    Google Scholar 

  40. Nellis, H.J. and de Leenheer, A.P. A review: Microbial sources of carotenoid pigments used in foods and feeds. J. Appl. Bacteriol. 70 (1991) 181–191.

    Article  Google Scholar 

  41. Francis, F.J. Food Technology—Special Report Colour Additives 41 (1987) 62–68.

    CAS  Google Scholar 

  42. Wong, H.C. Antiobiotic and pigment production by Monascus purpureus, Ph. D Thesis, University of Georgia, Athens, USA (1982).

    Google Scholar 

  43. Wong, H.C. et al.Mycologia 73 (1981) 649.

    Article  CAS  Google Scholar 

  44. Lin, T.F. et al.App & Envir. Micro. 43(3) (1982) 671.

    CAS  Google Scholar 

  45. Lin, T.F. and Demain, A.L. Effect of nutrition of Monascus sp. on formation of red pigments, Appl. Microbiol. Biotechnol. 36 (1991) 70–75.

    Article  Google Scholar 

  46. Lin, T.F. et al. Formation of water-soluble Monascus red pigments by biological and semi-synthetic processes, J. Ind. Microbiol. 9 (1992) 173–179.

    Article  CAS  Google Scholar 

  47. Ben-Amotz, A. and Avron, M. Ann. Rev. Microbiol. 37 (1983) 95–119.

    Article  Google Scholar 

  48. Butcher, R.W. An Introductory Account of the Small Algae of British Coastal Waters. Fisheries Investigations Secretariat, Ministry of Agriculture, Fisheries & Food, UK (1959).

    Google Scholar 

  49. Ben Amotz, A. and Avron, M. Glycerol, β-carotene and dry algal meal production by commercial cultivation of Dunaliella. In Algae Biomass & Use (G. Shelef and C.J. Soeder eds), Elsevier, Amsterdam (1980) pp. 603–610.

    Google Scholar 

  50. Ben Amotz, A. and Avron, M. Glycerol and β-carotene metabolism in the halotolerant alga Dunaliella: A model system for biosolar energy conversion. Trends Biochem. & Sci. November (1981) 297.

    Google Scholar 

  51. Ginzburg, B.Z. and Ginzburg, M. Studies of the comparative physiology of the genusDunaliella (Chlorophyta, Volvocales). 1. Response of growth to NaCl concentration. Br. Phyc. J. 20 (1985) 277.

    Article  Google Scholar 

  52. Ginzburg, M. and Ginzburg, B.Z. Influence of age of culture and light intensity on solute concentrations in two Dunaliella strains. J. Exp. Botany 36 (1985) 701–712.

    Article  CAS  Google Scholar 

  53. Borowitzka, L.J. and Brown, A.D. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. Arch. Microbiol. 96 (1974) 37–52.

    Article  Google Scholar 

  54. Borowitzka, L.J., Kessly, D.S. and Brown, A.D. The salt relations of Dunaliella. Arch. Microbiol. 113 (1977) 131–8.

    Article  Google Scholar 

  55. Brown A.D. and Borowitzka, L.J. Halotolerance of Dunaliella. In Biochemistry and Physiology of Protozoa, 2nd edn, Vol. 1 (M. Levandowsky and S. Hunter eds), Academic Press, New York (1979) pp. 139–90.

    Google Scholar 

  56. Borowitzka, L.J. Nova Hedwigia 83 (1986) 224.

    Google Scholar 

  57. Taylor, R.F. Carotenoids: Products, Applications and Markets; Decision Resources Inc., Burlington, MA (1990).

    Google Scholar 

  58. Curtain, C.C., West, S.M. and Schlipalius, L.E. Manufacture of β-carotene from the salt lake alga Dunaliella salina; the scientific and technical background. Australian J. Biotec. (1987) 51.

    Google Scholar 

  59. Schlipalius, L.E. The extensive commercial cultivation of Dunaliella salina. Bioresource Technol. 38 (1991) 241–243.

    Article  CAS  Google Scholar 

  60. Renstrom, B. and Liaaen-Jensen, S. Fatty acid composition of some esterified carotenols. Comp. Biochem. Physiol., B. Comp. Biochem. 69 (1981) 625–627.

    Article  Google Scholar 

  61. Bubrick, P. Production of Astaxanthin from Haematococcus. Bioresource Technol. 38 (1991) 237–239.

    Article  CAS  Google Scholar 

  62. Kobayashi, M. et al. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green algae, Haematococcus pluvialis. J. Ferment. Bioeng. 74(1) (1992) 61–63.

    Article  CAS  Google Scholar 

  63. Kobayashi, M. et al. Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferment. Bioeng. 74(1) (1992) 17–20.

    Article  CAS  Google Scholar 

  64. Dasek, J., Sheperd, D. and Traelnes, K.R. Swiss Patent No. 537 456 (1973).

    Google Scholar 

  65. Ninet, L. and Renaut, J. Carotenoids. In Microbial Technology, 2nd edn (eds H.J. Peppler and D. Perleman), Academic Press, New York (1979) pp. 529–544.

    Google Scholar 

  66. Nelis, H.J. and De Leenheer, A.P. Reinvestigation of Brevibacterium sp. strain KY-4313 as a source of canthaxanthin. Appl. & Env. Microbiol. 55 (1989) 2505–2510.

    Google Scholar 

  67. Tanaka, A. et al. Studies on the formation of vitamins and their function in hydrocarbon fermentation. (IX) Production of carotenoids from hydrocarbons by Brevibacterium. J. Ferment. Technol. 49 (1971) 778–791.

    CAS  Google Scholar 

  68. Andrewes, A.G. et al. Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15 (1976) 1003–1007.

    Article  CAS  Google Scholar 

  69. Miller, M.W. et al. Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bad. 26(2) (1976) 286–291.

    Article  Google Scholar 

  70. Danisco Bioteknologi PCT Patent No. 88 08 025 (1988).

    Google Scholar 

  71. Igene Biotechnology, PCT Patent No. 90 01 552 (1990).

    Google Scholar 

  72. Phillips Petroleum, European Patent No. 454 024 (1991).

    Google Scholar 

  73. Quest International, European Patent No. 474 347 (1991).

    Google Scholar 

  74. Kyowa Hakko Kogyo, European Patent No. 543 023 (1992).

    Google Scholar 

  75. Villadsen, PCT Patent No. 92 22 648 (1992).

    Google Scholar 

  76. Gist Brocades, European Patent No. 590 707 (1992).

    Google Scholar 

  77. Gist Brocades, European Patent No. 551 676 (1993).

    Google Scholar 

  78. Johnson, E.A. and Lewis, M.J. Astaxanthin formation by the yeast Phaffia rhodozyma. J. Gen. Microbiol. 115 (1979) 173–183.

    Article  Google Scholar 

  79. Haard, H.F. The production of carotenoid pigments from mineral oil by bacteria. J. Bacteriol. 48 (1988) 219–231.

    Google Scholar 

  80. An, G.-H. et al. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. J. Appl. Env. Microbiol. 55 (1989) 116–124.

    CAS  Google Scholar 

  81. An, G.-H. et al. Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Biotechnology 9 (1991).

    Google Scholar 

  82. An, G.-H. and Johnson, E.A. Influence of light on growth and pigmentation of the yeast Phaffia rhodozyma, Antonie van Leeuwenhoek. J. Microbiol. Serol. 57 (1990) 191–203.

    Google Scholar 

  83. Johnson, E.A. and An, G.-H. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11 (1991) 297–326.

    Article  Google Scholar 

  84. Okagbue, R.N. and Lewis, M.J. Use of alfalfa juice as a substrate for propagation of the red yeast Phaffia rhodozyma. Appl. Microbiol. Biotechnol. 20 (1984) 33–39.

    Google Scholar 

  85. Okagbue, R.N. and Lewis, M.J. Inhibition of the red yeast Phaffia rhodozyma by saponin. Appl. Microbiol. Biotechnol. 20 (1984) 278–280.

    Google Scholar 

  86. Johnson, E.A. et al. Simple method for the isolation of astaxanthin from the Basidiomycetous yeast Phaffia rhodozyma. Appl. Env. Microbiol. 35 (1978) 1155–1159.

    CAS  Google Scholar 

  87. Okagbue, R.N. and Lewis, M.J. Autolysis of the red yeast Phaffia rhodozyma: a potential tool to facilitate extraction of astaxanthin. Biotechnol. Letts. 6 (1984) 247–250.

    Article  Google Scholar 

  88. Okagbue, R.N. and Lewis, M.J. Mixed culture of Bacillus circulans WL-12 and Phaffia rhodozyma on different carbon sources: yeast-wall lytic enzyme production and extractability of astaxanthin. Biotechnol. Letts. 5 (1983) 731–736.

    Article  Google Scholar 

  89. Okagbue, R.N. and Lewis, M.J. Influence of mixed culture conditions on yeast-wall hydrolytic activity of Bacillus circulans WL-12 and on extractability of astaxanthin from the yeast Phaffia rhodozyma. J. Appl. Bacteriol. 59 (1985) 243–255.

    Article  Google Scholar 

  90. Meyer, P.S. and Du Preez, J.C. Effect of culture conditions on astaxanthin production by a mutant of Phaffia rhodozyma in batch and chemostat culture. Appl Microbiol. Biotechnol. 40 (1994) 780–785.

    Article  Google Scholar 

  91. Taylor, R.F. Production of natural carotenoids. J. Amer. Chem. Soc., Chap. 4 (1992) 27–37.

    Google Scholar 

  92. Murakoshi, M. and Iwasaki, R. Palm oil yields carotene for world markets. Inform (Oleochemicals) 3(2) (1992) 210–217.

    Google Scholar 

  93. Torrissen, O.J. et al. Pigmentation of salmonids–carotenoid deposition and metabolism in salmonids. Crit. Rev. Aquatic Sci. 1 (1989) 209.

    CAS  Google Scholar 

  94. Unilever Research Laboratory, Scottish Patent Filing No. NCIMB 40309 (1990) Colworth EDI.

    Google Scholar 

  95. Haber, G.J. et al. US Patent No. 4 132 793 (1977).

    Google Scholar 

  96. Oragvelidze, N.I. et al. USSR Patent No. 565 049 (1977).

    Google Scholar 

  97. Yoshotomi, T. et al. Japanese Patent No. 78 119 929 (1978).

    Google Scholar 

  98. Cherukuri, S.R. et al. US Patent No. 4 371 549 (1981).

    Google Scholar 

  99. Adams, J.P. et al. Production of a betacyanine concentrate by fermentation of red beet juice with Candida utilis. J. Food Sci. 41 (1976) 78.

    Article  CAS  Google Scholar 

  100. Verniers, C. French Patent No. 2 399 467 (1977).

    Google Scholar 

  101. Drdak, M. and Nascakova, M. Czechoslovakian Patent No. 225 529 (1985).

    Google Scholar 

  102. Drdak, M. et al. Red beet pigment composition: effects of fermentation by different strains of Saccharomyces cerevisiae. J. Food Sci. 57(4) (1992) 935–936.

    Article  CAS  Google Scholar 

  103. Pourrat, H. et al. Purification of red beetroot dye by fermentation. Biotechnol. Lett. 5(6) (1983) 381.

    Article  CAS  Google Scholar 

  104. Britton, G. Pure & Appl. Chem. 63 (1991) 101–108.

    Article  CAS  Google Scholar 

  105. McCormick, R.D. Prepared Foods 155(1) (1986) 131.

    Google Scholar 

  106. Peyvatin, J.L. Biofutur 50 (1986) 19.

    Google Scholar 

  107. Van Brunt, J. Biotechnology 3(6) (1985) 525.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

O’Callaghan, M.C. (1996). Biotechnology in natural food colours: The role of bioprocessing. In: Hendry, G.A.F., Houghton, J.D. (eds) Natural Food Colorants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2155-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2155-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5900-5

  • Online ISBN: 978-1-4615-2155-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation