Endocytosis and the Regulation of Cell Signaling, Cell Adhesion, and Epithelial to Mesenchymal Transition in Cancer

  • Chapter
  • First Online:
Vesicle Trafficking in Cancer

Abstract

Endosomes play key roles in the control and execution of such diverse and spatially restricted processes as cell signaling, epithelial to mesenchymal transitions as well as cell adhesion and migration. The endocytosis of growth factor receptors and adhesion molecules, such as cadherins and integrins, is coming into focus as a major mechanism in the regulation of cellular processes that govern cell growth, differentiation, survival, and motility. Subversion of these pathways accompanies disease progression, especially cancer. We suggest that endosomes are multifunctional dynamic platforms on which unique sets of molecular components are assembled and sorted to adapt to different environmental and cellular cues. A better understanding of how endosomes can function as conduits for the acquisition of oncogenic phenotypes will lead to more specific therapeutic approaches to combat cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhtar N, Hotchin NA (2001) RAC1 regulates adherens junctions through endocytosis of E-cadherin. Mol Biol Cell 12:847–862

    PubMed  CAS  Google Scholar 

  2. Arevalo JC, Waite J, Rajagopal R, Beyna M, Chen ZY, Lee FS, Chao MV (2006) Cell survival through Trk neurotrophin receptors is differentially regulated by ubiquitination. Neuron 50:549–559

    Article  PubMed  CAS  Google Scholar 

  3. Ascano M, Bodmer D, Kuruvilla R (2012) Endocytic trafficking of neurotrophins in neural development. Trends Cell Biol 22:266–273

    Article  PubMed  CAS  Google Scholar 

  4. Baulida J, Kraus MH, Alimandi M, Di Fiore PP, Carpenter G (1996) All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. J Biol Chem 271:5251–5257

    Article  PubMed  CAS  Google Scholar 

  5. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1:a003129

    Article  PubMed  Google Scholar 

  6. Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG (2001) Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J Cell Biol 154:1007–1017

    Article  PubMed  CAS  Google Scholar 

  7. Caswell PT, Spence HJ, Parsons M, White DP, Clark K, Cheng KW, Mills GB, Humphries MJ, Messent AJ, Anderson KI, McCaffrey MW, Ozanne BW, Norman JC (2007) Rab25 associates with alpha5beta1 integrin to promote invasive migration in 3D microenvironments. Dev Cell 13:496–510

    Article  PubMed  CAS  Google Scholar 

  8. Chastagner P, Israel A, Brou C (2008) AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One 3:e2735

    Article  PubMed  Google Scholar 

  9. Chen X, Kojima S, Borisy GG, Green KJ (2003) p120 catenin associates with kinesin and facilitates the transport of cadherin-catenin complexes to intercellular junctions. J Cell Biol 163:547–557

    Article  PubMed  CAS  Google Scholar 

  10. Cosker KE, Courchesne SL, Segal RA (2008) Action in the axon: generation and transport of signaling endosomes. Curr Opin Neurobiol 18:270–275

    Article  PubMed  CAS  Google Scholar 

  11. Cox LJ, Hengst U, Gurskaya NG, Lukyanov KA, Jaffrey SR (2008) Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 10:149–159

    Article  PubMed  CAS  Google Scholar 

  12. D’Souza-Schorey C (2005) Disassembling adherens junctions: breaking up is hard to do. Trends Cell Biol 15:19–26

    Article  PubMed  Google Scholar 

  13. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    Article  PubMed  Google Scholar 

  14. Davis MA, Ireton RC, Reynolds AB (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163:525–534

    Article  PubMed  CAS  Google Scholar 

  15. De Deyne PG, O’Neill A, Resneck WG, Dmytrenko GM, Pumplin DW, Bloch RJ (1998) The vitronectin receptor associates with clathrin-coated membrane domains via the cytoplasmic domain of its beta5 subunit. J Cell Sci 111(Pt 18):2729–2740

    PubMed  Google Scholar 

  16. Debnath J, Brugge JS (2005) Modelling glandular epithelial cancers in three-dimensional ­cultures. Nat Rev Cancer 5:675–688

    Article  PubMed  CAS  Google Scholar 

  17. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410–421

    Article  PubMed  Google Scholar 

  18. Dunphy JL, Moravec R, Ly K, Lasell TK, Melancon P, Casanova JE (2006) The Arf6 GEF GEP100/BRAG2 regulates cell adhesion by controlling endocytosis of beta1 integrins. Curr Biol 16:315–320

    Article  PubMed  CAS  Google Scholar 

  19. Ebner R, Derynck R (1991) Epidermal growth factor and transforming growth factor-alpha: differential intracellular routing and processing of ligand-receptor complexes. Cell Regul 2:599–612

    PubMed  CAS  Google Scholar 

  20. Eden ER, Huang F, Sorkin A, Futter CE (2011) The role of EGF receptor ubiquitination in regulating its intracellular traffic. Traffic 13:329–337

    Article  PubMed  Google Scholar 

  21. Filipeanu CM, Zhou F, Lam ML, Kerut KE, Claycomb WC, Wu G (2006) Enhancement of the recycling and activation of beta-adrenergic receptor by Rab4 GTPase in cardiac myocytes. J Biol Chem 281:11097–11103

    Article  PubMed  CAS  Google Scholar 

  22. Fortini ME, Bilder D (2009) Endocytic regulation of Notch signaling. Curr Opin Genet Dev 19:323–328

    Article  PubMed  CAS  Google Scholar 

  23. Frasa MA, Maximiano FC, Smolarczyk K, Francis RE, Betson ME, Lozano E, Goldenring J, Seabra MC, Rak A, Ahmadian MR, Braga VM (2010) Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Curr Biol 20:198–208

    Article  PubMed  CAS  Google Scholar 

  24. French AR, Sudlow GP, Wiley HS, Lauffenburger DA (1994) Postendocytic trafficking of epidermal growth factor-receptor complexes is mediated through saturable and specific endosomal interactions. J Biol Chem 269:15749–15755

    PubMed  CAS  Google Scholar 

  25. Friedl P, Hegerfeldt Y, Tusch M (2004) Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48:441–449

    Article  PubMed  CAS  Google Scholar 

  26. Fujita Y, Krause G, Scheffner M, Zechner D, Leddy HE, Behrens J, Sommer T, Birchmeier W (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4:222–231

    Article  PubMed  CAS  Google Scholar 

  27. Fukui K, Tamura S, Wada A, Kamada Y, Igura T, Kiso S, Hayashi N (2007) Expression of Rab5a in hepatocellular carcinoma: possible involvement in epidermal growth factor signaling. Hepatol Res 37:957–965

    Article  PubMed  CAS  Google Scholar 

  28. Grimes ML, Zhou J, Beattie EC, Yuen EC, Hall DE, Valletta JS, Topp KS, LaVail JH, Bunnett NW, Mobley WC (1996) Endocytosis of activated TrkA: evidence that nerve growth factor induces formation of signaling endosomes. J Neurosci 16:7950–7964

    PubMed  CAS  Google Scholar 

  29. Hicke L, Riezman H (1996) Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis. Cell 84:277–287

    Article  PubMed  CAS  Google Scholar 

  30. Hooper S, Gaggioli C, Sahai E (2010) A chemical biology screen reveals a role for Rab21-mediated control of actomyosin contractility in fibroblast-driven cancer invasion. Br J Cancer 102:392–402

    Article  PubMed  CAS  Google Scholar 

  31. Horiuchi H, Lippe R, McBride HM, Rubino M, Woodman P, Stenmark H, Rybin V, Wilm M, Ashman K, Mann M, Zerial M (1997) A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90:1149–1159

    Article  PubMed  CAS  Google Scholar 

  32. Howe CL, Mobley WC (2004) Signaling endosome hypothesis: A cellular mechanism for long distance communication. J Neurobiol 58:207–216

    Article  PubMed  Google Scholar 

  33. Ikenouchi J, Umeda M (2010) FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci U S A 107:748–753

    Article  PubMed  CAS  Google Scholar 

  34. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42:283–323

    Article  PubMed  CAS  Google Scholar 

  35. Katzmann DJ, Odorizzi G, Emr SD (2002) Receptor downregulation and multivesicular-body sorting. Nat Rev Mol Cell Biol 3:893–905

    Article  PubMed  CAS  Google Scholar 

  36. Kazazic M, Bertelsen V, Pedersen KW, Vuong TT, Grandal MV, Rodland MS, Traub LM, Stang E, Madshus IH (2009) Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic 10:235–245

    Article  PubMed  CAS  Google Scholar 

  37. Keshamouni VG, Schiemann WP (2009) Epithelial-mesenchymal transition in tumor ­metastasis: a method to the madness. Future Oncol 5:1109–1111

    Article  PubMed  Google Scholar 

  38. Kimura T, Sakisaka T, Baba T, Yamada T, Takai Y (2006) Involvement of the Ras-activated Rab5 guanine nucleotide exchange factor RIN2-Rab5 pathway in the hepatocyte growth factor-­induced endocytosis of E-cadherin. J Biol Chem 281:10598–10609

    Article  PubMed  CAS  Google Scholar 

  39. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed  CAS  Google Scholar 

  40. Li G (2011) Rab GTPases, membrane trafficking and diseases. Curr Drug Targets 12:1188–1193

    Article  PubMed  CAS  Google Scholar 

  41. Li J, Ballif BA, Powelka AM, Dai J, Gygi SP, Hsu VW (2005) Phosphorylation of ACAP1 by Akt regulates the stimulation-dependent recycling of integrin beta1 to control cell migration. Dev Cell 9:663–673

    Article  PubMed  CAS  Google Scholar 

  42. Li Y, Meng X, Feng H, Zhang G, Liu C, Li P (1999) Over-expression of the RAB5 gene in human lung adenocarcinoma cells with high metastatic potential. Chin Med Sci J 14:96–101

    PubMed  CAS  Google Scholar 

  43. Lobert VH, Brech A, Pedersen NM, Wesche J, Oppelt A, Malerod L, Stenmark H (2010) Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev Cell 19:148–159

    Article  PubMed  CAS  Google Scholar 

  44. London NR, Li DY (2011) Robo4-dependent Slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol 18:186–190

    Article  PubMed  CAS  Google Scholar 

  45. Longva KE, Blystad FD, Stang E, Larsen AM, Johannessen LE, Madshus IH (2002) Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies. J Cell Biol 156:843–854

    Article  PubMed  CAS  Google Scholar 

  46. Lu A, Tebar F, Alvarez-Moya B, Lopez-Alcala C, Calvo M, Enrich C, Agell N, Nakamura T, Matsuda M, Bachs O (2009) A clathrin-dependent pathway leads to KRas signaling on late endosomes en route to lysosomes. J Cell Biol 184:863–879

    Article  PubMed  CAS  Google Scholar 

  47. Lu Z, Ghosh S, Wang Z, Hunter T (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4:499–515

    Article  PubMed  CAS  Google Scholar 

  48. Miller FD, Mathew TC, Toma JG (1991) Regulation of nerve growth factor receptor gene expression by nerve growth factor in the develo** peripheral nervous system. J Cell Biol 112:303–312

    Article  PubMed  CAS  Google Scholar 

  49. Miura K, Nam JM, Kojima C, Mochizuki N, Sabe H (2009) EphA2 engages Git1 to suppress Arf6 activity modulating epithelial cell-cell contacts. Mol Biol Cell 20:1949–1959

    Article  PubMed  CAS  Google Scholar 

  50. Miyashita Y, Ozawa M (2007) A dileucine motif in its cytoplasmic domain directs beta-catenin-uncoupled E-cadherin to the lysosome. J Cell Sci 120:4395–4406

    Article  PubMed  CAS  Google Scholar 

  51. Miyashita Y, Ozawa M (2007) Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J Biol Chem 282:11540–11548

    Article  PubMed  CAS  Google Scholar 

  52. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8:835–850

    Article  PubMed  CAS  Google Scholar 

  53. Murphy JE, Padilla BE, Hasdemir B, Cottrell GS, Bunnett NW (2009) Endosomes: a legitimate platform for the signaling train. Proc Natl Acad Sci U S A 106:17615–17622

    Article  PubMed  CAS  Google Scholar 

  54. Nagano M, Hoshino D, Koshikawa N, Akizawa T, Seiki M (2012) Turnover of focal adhesions and cancer cell migration. Int J Cell Biol 2012:310616

    PubMed  Google Scholar 

  55. Nam KT, Lee HJ, Smith JJ, Lapierre LA, Kamath VP, Chen X, Aronow BJ, Yeatman TJ, Bhartur SG, Calhoun BC, Condie B, Manley NR, Beauchamp RD, Coffey RJ, Goldenring JR (2010) Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J Clin Invest 120:840–849

    Article  PubMed  CAS  Google Scholar 

  56. Nicholson RI, Gee JM, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15

    Article  PubMed  CAS  Google Scholar 

  57. Nishimura T, Kaibuchi K (2007) Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev Cell 13:15–28

    Article  PubMed  CAS  Google Scholar 

  58. Nishiya N, Kiosses WB, Han J, Ginsberg MH (2005) An alpha4 integrin-paxillin-Arf-GAP complex restricts Rac activation to the leading edge of migrating cells. Nat Cell Biol 7:343–352

    Article  PubMed  CAS  Google Scholar 

  59. Odley A, Hahn HS, Lynch RA, Marreez Y, Osinska H, Robbins J, Dorn GW 2nd (2004) Regulation of cardiac contractility by Rab4-modulated beta2-adrenergic receptor recycling. Proc Natl Acad Sci U S A 101:7082–7087

    Article  PubMed  CAS  Google Scholar 

  60. Palacios F, D’Souza-Schorey C (2003) Modulation of Rac1 and ARF6 activation during ­epithelial cell scattering. J Biol Chem 278:17395–17400

    Article  PubMed  CAS  Google Scholar 

  61. Palacios F, Price L, Schweitzer J, Collard JG, D’Souza-Schorey C (2001) An essential role for ARF6-regulated membrane traffic in adherens junction turnover and epithelial cell migration. EMBO J 20:4973–4986

    Article  PubMed  CAS  Google Scholar 

  62. Palacios F, Schweitzer JK, Boshans RL, D’Souza-Schorey C (2002) ARF6-GTP recruits Nm23-H1 to facilitate dynamin-mediated endocytosis during adherens junctions disassembly. Nat Cell Biol 4:929–936

    Article  PubMed  CAS  Google Scholar 

  63. Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25:389–402

    Article  PubMed  CAS  Google Scholar 

  64. Paterson AD, Parton RG, Ferguson C, Stow JL, Yap AS (2003) Characterization of E-cadherin endocytosis in isolated MCF-7 and Chinese hamster ovary cells: the initial fate of unbound E-cadherin. J Biol Chem 278:21050–21057

    Article  PubMed  CAS  Google Scholar 

  65. Pellinen T, Arjonen A, Vuoriluoto K, Kallio K, Fransen JA, Ivaska J (2006) Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. J Cell Biol 173:767–780

    Article  PubMed  CAS  Google Scholar 

  66. Pitcher JA, Payne ES, Csortos C, DePaoli-Roach AA, Lefkowitz RJ (1995) The G-protein-coupled receptor phosphatase: a protein phosphatase type 2A with a distinct subcellular distribution and substrate specificity. Proc Natl Acad Sci U S A 92:8343–8347

    Article  PubMed  CAS  Google Scholar 

  67. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: ­acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  PubMed  CAS  Google Scholar 

  68. Powelka AM, Sun J, Li J, Gao M, Shaw LM, Sonnenberg A, Hsu VW (2004) Stimulation-dependent recycling of integrin beta1 regulated by ARF6 and Rab11. Traffic 5:20–36

    Article  PubMed  CAS  Google Scholar 

  69. Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S, Weinreb P, Hart IR, Marshall JF (2007) HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 67:5275–5284

    Article  PubMed  CAS  Google Scholar 

  70. Ramsay AG, Marshall JF, Hart IR (2007) Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26:567–578

    Article  PubMed  CAS  Google Scholar 

  71. Roberts M, Barry S, Woods A, van der Sluijs P, Norman J (2001) PDGF-regulated rab4-­dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr Biol 11:1392–1402

    Article  PubMed  CAS  Google Scholar 

  72. Rush JS, Quinalty LM, Engelman L, Sherry DM, Ceresa BP (2012) Endosomal accumulation of the activated epidermal growth factor receptor (EGFR) induces apoptosis. J Biol Chem 287:712–722

    Article  PubMed  CAS  Google Scholar 

  73. Sabe H, Hashimoto S, Morishige M, Hashimoto A, Ogawa E (2008) The EGFR-GEP100-Arf6 pathway in breast cancer: Full invasiveness is not from the inside. Cell Adh Migr 2:71–73

    Article  PubMed  Google Scholar 

  74. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, Oda H, Yamagata T, Takita J, Gotoh N, Nakazaki K, Kawamata N, Onodera M, Nobuyoshi M, Hayashi Y, Harada H, Kurokawa M, Chiba S, Mori H, Ozawa K, Omine M, Hirai H, Nakauchi H, Koeffler HP, Ogawa S (2009) Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460:904–908

    Article  PubMed  CAS  Google Scholar 

  75. Sato K, Watanabe T, Wang S, Kakeno M, Matsuzawa K, Matsui T, Yokoi K, Murase K, Sugiyama I, Ozawa M, Kaibuchi K (2011) Numb controls E-cadherin endocytosis through p120 catenin with aPKC. Mol Biol Cell 22:3103–3119

    Article  PubMed  CAS  Google Scholar 

  76. Schenck A, Goto-Silva L, Collinet C, Rhinn M, Giner A, Habermann B, Brand M, Zerial M (2008) The endosomal protein App l1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133:486–497

    Article  PubMed  CAS  Google Scholar 

  77. Scita G, Di Fiore PP (2010) The endocytic matrix. Nature 463:464–473

    Article  PubMed  CAS  Google Scholar 

  78. Seachrist JL, Anborgh PH, Ferguson SS (2000) beta 2-adrenergic receptor internalization, endosomal sorting, and plasma membrane recycling are regulated by rab GTPases. J Biol Chem 275:27221–27228

    PubMed  CAS  Google Scholar 

  79. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  80. Shi F, Sottile J (2008) Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci 121:2360–2371

    Article  PubMed  CAS  Google Scholar 

  81. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S, Di Fiore PP (2008) Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15:209–219

    Article  PubMed  CAS  Google Scholar 

  82. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92:273–366

    Article  PubMed  CAS  Google Scholar 

  83. Sorkin A, Di Fiore PP, Carpenter G (1993) The carboxyl terminus of epidermal growth factor receptor/erbB-2 chimerae is internalization impaired. Oncogene 8:3021–3028

    PubMed  CAS  Google Scholar 

  84. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular ­networks. Nat Rev Mol Cell Biol 10:609–622

    Article  PubMed  CAS  Google Scholar 

  85. Tall GG, Barbieri MA, Stahl PD, Horazdovsky BF (2001) Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev Cell 1:73–82

    Article  PubMed  CAS  Google Scholar 

  86. Tan YH, Krishnaswamy S, Nandi S, Kanteti R, Vora S, Onel K, Hasina R, Lo FY, El-Hashani E, Cervantes G, Robinson M, Hsu HS, Kales SC, Lipkowitz S, Karrison T, Sattler M, Vokes EE, Wang YC, Salgia R (2010) CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS One 5:e8972

    Article  PubMed  Google Scholar 

  87. Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    Article  PubMed  CAS  Google Scholar 

  88. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95:779–791

    Article  PubMed  CAS  Google Scholar 

  89. Tushir JS, Clancy J, Warren A, Wrobel C, Brugge JS, D’Souza-Schorey C (2010) Unregulated ARF6 activation in epithelial cysts generates hyperactive signaling endosomes and disrupts morphogenesis. Mol Biol Cell 21:2355–2366

    Article  PubMed  CAS  Google Scholar 

  90. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-­mediated endocytosis. Science 274:2086–2089

    Article  PubMed  CAS  Google Scholar 

  91. Wang Y, Roche O, Yan MS, Finak G, Evans AJ, Metcalf JL, Hast BE, Hanna SC, Wondergem B, Furge KA, Irwin MS, Kim WY, Teh BT, Grinstein S, Park M, Marsden PA, Ohh M (2009) Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 15:319–324

    Article  PubMed  CAS  Google Scholar 

  92. Wang Z, Sandiford S, Wu C, Li SS (2009) Numb regulates cell-cell adhesion and polarity in response to tyrosine kinase signalling. EMBO J 28:2360–2373

    Article  PubMed  CAS  Google Scholar 

  93. Weber GF, Bjerke MA, DeSimone DW (2011) Integrins and cadherins join forces to form adhesive networks. J Cell Sci 124:1183–1193

    Article  PubMed  CAS  Google Scholar 

  94. Wu WJ, Hirsch DS (2009) Mechanism of E-cadherin lysosomal degradation. Nat Rev Cancer 9:143; author reply 143

    Article  PubMed  CAS  Google Scholar 

  95. **ao K, Allison DF, Buckley KM, Kottke MD, Vincent PA, Faundez V, Kowalczyk AP (2003) Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol 163:535–545

    Article  PubMed  CAS  Google Scholar 

  96. Xu L, Lubkov V, Taylor LJ, Bar-Sagi D (2010) Feedback regulation of Ras signaling by Rabex-5-mediated ubiquitination. Curr Biol 20:1372–1377

    Article  PubMed  CAS  Google Scholar 

  97. Yan H, Jahanshahi M, Horvath EA, Liu HY, Pfleger CM (2010) Rabex-5 ubiquitin ligase activity restricts Ras signaling to establish pathway homeostasis in Drosophila. Curr Biol 20:1378–1382

    Article  PubMed  CAS  Google Scholar 

  98. Yoon SO, Shin S, Mercurio AM (2005) Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 65:2761–2769

    Article  PubMed  CAS  Google Scholar 

  99. Zhu H, Liang Z, Li G (2009) Rabex-5 is a Rab22 effector and mediates a Rab22-Rab5 signaling cascade in endocytosis. Mol Biol Cell 20:4720–4729

    Article  PubMed  CAS  Google Scholar 

  100. Zhu H, Qian H, Li G (2010) Delayed onset of positive feedback activation of rab5 by rabex-5 and rabaptin-5 in endocytosis. PLoS One 5:e9226

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ research programs are supported in part by NIH grants, CA115316 to CDS and GM074692 to GL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crislyn D’Souza-Schorey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

D’Souza-Schorey, C., Li, G. (2013). Endocytosis and the Regulation of Cell Signaling, Cell Adhesion, and Epithelial to Mesenchymal Transition in Cancer. In: Yarden, Y., Tarcic, G. (eds) Vesicle Trafficking in Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6528-7_6

Download citation

Publish with us

Policies and ethics

Navigation