Log in

Integrin trafficking and its role in cancer metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Enhanced levels of expression of certain integrins, and a consequent increase in specific integrin signals, have been linked to cancer cell progression. Dysfunctional integrin signaling is thought to be involved, at least in part, in mediating the detachment of tumor cells from neighboring cells while providing enhanced survival and proliferative capabilities which allow such disseminating tumor cells to grow in new, foreign, microenvironments. Cell biologists have known for some time that integrin heterodimers are endocytosed from the plasma membrane in to the cytoplasm with some of this receptor later being exocytosed back to the cell surface; a cellular mechanism referred to as ‘trafficking– Although extensive research within the integrin field has elucidated key signal transduction pathways as being involved in integrin-mediated cellular behavior, both in normal and transformed cells, it is only relatively recently that the importance of integrin trafficking in modulating cellular function has been demonstrated. This review aims to identify the major trafficking molecules found to play a functional role in cancer cell behavior with special emphasis on the importance of integrin trafficking during neoplastic cell migration and invasion; vital components of the metastatic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–0.

    Article  PubMed  CAS  Google Scholar 

  2. Munshi, H. G., & Stack, M. S. (2006). Reciprocal interactions between adhesion receptor signaling and MMP regulation. Cancer and Metastasis Reviews, 25, 45–6.

    Article  PubMed  CAS  Google Scholar 

  3. Wu, X., Gan, B., Yoo, Y., & Guan, J. L. (2005). FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Developmental Cell, 9, 185–96.

    Article  PubMed  CAS  Google Scholar 

  4. Hood, J. D., & Cheresh, D. A. (2002). Role of integrins in cell invasion and migration. Nature Reviews Cancer, 2, 91–00.

    Article  PubMed  Google Scholar 

  5. Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–87.

    Article  PubMed  CAS  Google Scholar 

  6. Aplin, A. E., Howe, A. K., & Juliano, R. L. (1999). Cell adhesion molecules, signal transduction and cell growth. Current Opinion in Cell Biology, 11, 737–44.

    Article  PubMed  CAS  Google Scholar 

  7. Naylor, M. J., Li, N., Cheung, J., Lowe, E. T., Lambert, E., Marlow, R., & Wang, P., et al. (2005). Ablation of beta1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. Journal of Cell Biology, 171, 717–28.

    Article  PubMed  CAS  Google Scholar 

  8. Reddig, P. J., & Juliano, R. L. (2005). Clinging to life: cell to matrix adhesion and cell survival. Cancer and Metastasis Reviews, 24, 425–39.

    Article  PubMed  Google Scholar 

  9. Nikolopoulos, S. N., Blaikie, P., Yoshioka, T., Guo, W., & Giancotti, F. G. (2004). Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell, 6, 471–83.

    Article  PubMed  CAS  Google Scholar 

  10. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–26.

    Article  PubMed  CAS  Google Scholar 

  11. Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W. J., Inghirami, G., et al. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell, 126, 489–02.

    Article  PubMed  CAS  Google Scholar 

  12. Brooks, P. C., Clark, R. A., & Cheresh, D. A. (1994). Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science, 264, 569–71.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas, G. J., Lewis, M. P., Whawell, S. A., Russell, A., Sheppard, D., Hart, I. R., et al. (2001). Expression of the alphavbeta6 integrin promotes migration and invasion in squamous carcinoma cells. Journal of Investigative Dermatology, 117, 67–3.

    Article  PubMed  CAS  Google Scholar 

  14. Caswell, P. T., & Norman, J. C. (2006). Integrin trafficking and the control of cell migration. Traffic, 7, 14–1.

    Article  PubMed  CAS  Google Scholar 

  15. Le Roy, C., & Wrana, J. L. (2005). Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nature Reviews. Molecular Cell Biology, 6, 112–26.

    Article  PubMed  CAS  Google Scholar 

  16. Maldonado-Baez, L., & Wendland, B. (2006). Endocytic adaptors: recruiters, coordinators and regulators. Trends in Cell Biology, 16, 505–13.

    Article  PubMed  CAS  Google Scholar 

  17. Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N., & Sorkin, A. (1999). Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis. EMBO Journal, 18, 2489–499.

    Article  PubMed  CAS  Google Scholar 

  18. de Melker, A. A., van der Horst, G., & Borst, J. (2004). c-Cbl directs EGF receptors into an endocytic pathway that involves the ubiquitin-interacting motif of Eps15. Journal of Cell Science, 117, 5001–012.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols, B. J., & Lippincott-Schwartz, J. (2001). Endocytosis without clathrin coats. Trends in Cell Biology, 11, 406–12.

    Article  PubMed  CAS  Google Scholar 

  20. Cheng, Z. J., Singh, R. D., Sharma, D. K., Holicky, E. L., Hanada, K., Marks, D. L., et al. (2006). Distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid requirements. Molecular Biology of the Cell, 17, 3197–210.

    Article  PubMed  CAS  Google Scholar 

  21. Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. Journal of Cell Biology, 161, 673–77.

    Article  PubMed  CAS  Google Scholar 

  22. Polo, S., & Di Fiore, P. P. (2006). Endocytosis conducts the cell signaling orchestra. Cell, 124, 897–00.

    Article  PubMed  CAS  Google Scholar 

  23. Nichols, B. (2003). Caveosomes and endocytosis of lipid rafts. Journal of Cell Science, 116, 4707–714.

    Article  PubMed  CAS  Google Scholar 

  24. Pelkmans, L., Kartenbeck, J., & Helenius, A. (2001). Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biology, 3, 473–83.

    Article  PubMed  CAS  Google Scholar 

  25. Nichols, B. J. A. (2002). Distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nature Cell Biology, 4, 374–78.

    PubMed  CAS  Google Scholar 

  26. Sabharanjak, S., Sharma, P., Parton, R. G., & Mayor, S. (2002). GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Developmental Cell, 2, 411–23.

    Article  PubMed  CAS  Google Scholar 

  27. Pelkmans, L., Burli, T., Zerial, M., & Helenius, A. (2004). Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell, 118, 767–80.

    Article  PubMed  CAS  Google Scholar 

  28. Lamaze, C., Dujeancourt, A., Baba, T., Lo, C. G., Benmerah, A., & Dautry-Varsat, A. (2001). Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Molecular Cell, 7, 661–71.

    Article  PubMed  CAS  Google Scholar 

  29. Sauvonnet, N., Dujeancourt, A., & Dautry-Varsat, A. (2005). Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. Journal of Cell Biology, 168, 155–63.

    Article  PubMed  CAS  Google Scholar 

  30. Di Guglielmo, G. M., Le Roy, C., Goodfellow, A. F., & Wrana, J. L. (2003). Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nature Cell Biology, 5, 410–21.

    Article  PubMed  CAS  Google Scholar 

  31. Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2, 107–17.

    Article  PubMed  CAS  Google Scholar 

  32. Pellinen, T., Arjonen, A., Vuoriluoto, K., Kallio, K., Fransen, J. A., & Ivaska, J. (2006). Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins. Journal of Cell Biology, 173, 767–80.

    Article  PubMed  CAS  Google Scholar 

  33. Mohrmann, K., & van der Sluijs, P. (1999). Regulation of membrane transport through the endocytic pathway by rabGTPases. Molecular Membrane Biology, 16, 81–7.

    Article  PubMed  CAS  Google Scholar 

  34. Roberts, M., Barry, S., Woods, A., van der Sluijs, P., & Norman, J. (2001). PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. Current Biology, 11, 1392–402.

    Article  PubMed  CAS  Google Scholar 

  35. Roberts, M. S., Woods, A. J., Dale, T. C., Van Der Sluijs, P., & Norman, J. C. (2004). Protein kinase B/Akt acts via glycogen synthase kinase 3 to regulate recycling of alpha v beta 3 and alpha 5 beta 1 integrins. Molecular and Cellular Biology, 24, 1505–515.

    Article  PubMed  CAS  Google Scholar 

  36. Reszka, A. A., Hayashi, Y., & Horwitz, A. F. (1992). Identification of amino acid sequences in the integrin beta 1 cytoplasmic domain implicated in cytoskeletal association. Journal of Cell Biology, 117, 1321–330.

    Article  PubMed  CAS  Google Scholar 

  37. De Deyne, P. G., O’Neill, A., Resneck, W. G., Dmytrenko, G. M., Pumplin, D. W., & Bloch, R. J. (1998). The vitronectin receptor associates with clathrin-coated membrane domains via the cytoplasmic domain of its beta5 subunit. Journal of Cell Science, 111(Pt 18), 2729–740.

    PubMed  Google Scholar 

  38. Memmo, L. M., & McKeown-Longo, P. (1998). The alphavbeta5 integrin functions as an endocytic receptor for vitronectin. Journal of Cell Science, 111(Pt 4), 425–33.

    PubMed  CAS  Google Scholar 

  39. Pellinen, T., & Ivaska, J. (2006). Integrin traffic. Journal of Cell Science, 119, 3723–731.

    Article  PubMed  CAS  Google Scholar 

  40. Berryman, S., Clark, S., Monaghan, P., & Jackson, T. (2005). Early events in integrin alphavbeta6-mediated cell entry of foot-and-mouth disease virus. Journal of Virology, 79, 8519–534.

    Article  PubMed  CAS  Google Scholar 

  41. Altankov, G., & Grinnell, F. (1995). Fibronectin receptor internalization and AP-2 complex reorganization in potassium-depleted fibroblasts. Experimental Cell Research, 216, 299–09.

    Article  PubMed  CAS  Google Scholar 

  42. Ng, T., Shima, D., Squire, A., Bastiaens, P. I., Gschmeissner, S., Humphries, M. J., et al. (1999). PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic. EMBO Journal, 18, 3909–923.

    Article  PubMed  CAS  Google Scholar 

  43. Upla, P., Marjomaki, V., Kankaanpaa, P., Ivaska, J., Hyypia, T., Van Der Goot, F. G., et al. (2004). Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization. Molecular Biology of the Cell, 15, 625–36.

    Article  PubMed  CAS  Google Scholar 

  44. Wary, K. K., Mainiero, F., Isakoff, S. J., Marcantonio, E. E., & Giancotti, F. G. (1996). The daptor protein Shc couples a class of integrins to the control of cell cycle progression. Cell, 87, 733–43.

    Article  PubMed  CAS  Google Scholar 

  45. Wary, K. K., Mariotti, A., Zurzolo, C., & Giancotti, F. G. (1998). A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell, 94, 625–34.

    Article  PubMed  CAS  Google Scholar 

  46. Panicker, A. K., Buhusi, M., Erickson, A., & Maness, P. F. (2006). Endocytosis of beta1 integrins is an early event in migration promoted by the cell adhesion molecule L1. Experimental Cell Research, 312, 299–07.

    PubMed  CAS  Google Scholar 

  47. Laukaitis, C. M., Webb, D. J., Donais, K., & Horwitz, A. F. (2001). Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. Journal of Cell Biology, 153, 1427–440.

    Article  PubMed  CAS  Google Scholar 

  48. Liu, G., Swihart, M. T., & Neelamegham, S. (2005). Sensitivity, principal component and flux analysis applied to signal transduction: the case of epidermal growth factor mediated signaling. Bioinformatics, 21, 1194–202.

    Article  PubMed  CAS  Google Scholar 

  49. del Pozo, M. A., Balasubramanian, N., Alderson, N. B., Kiosses, W. B., Grande-Garcia, A., Anderson, R. G., et al. (2005). Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biology, 7, 901–08.

    Article  PubMed  CAS  Google Scholar 

  50. Bretscher, M. S. (1996). Moving membrane up to the front of migrating cells. Cell, 85, 465–67.

    Article  PubMed  CAS  Google Scholar 

  51. Rappoport, J. Z., & Simon, S. M. (2003). Real-time analysis of clathrin-mediated endocytosis during cell migration. Journal of Cell Science, 116, 847–55.

    Article  PubMed  CAS  Google Scholar 

  52. Jones, M. C., Caswell, P. T., & Norman, J. C. (2006). Endocytic recycling pathways: emerging regulators of cell migration. Current Opinion in Cell Biology, 18, 549–57.

    Article  PubMed  CAS  Google Scholar 

  53. Fabbri, M., Di Meglio, S., Gagliani, M. C., Consonni, E., Molteni, R., Bender, J. R., et al. (2005). Dynamic partitioning into lipid rafts controls the endo-exocytic cycle of the alphaL/beta2 integrin, LFA-1, during leukocyte chemotaxis. Molecular Biology of the Cell, 16, 5793–803.

    Article  PubMed  CAS  Google Scholar 

  54. Ivaska, J., Whelan, R. D., Watson, R., & Parker, P. J. (2002). PKC epsilon controls the traffic of beta1 integrins in motile cells. EMBO Journal, 21, 3608–619.

    Article  PubMed  CAS  Google Scholar 

  55. Woods, A. J., White, D. P., Caswell, P. T., & Norman, J. C. (2004). PKD1/PKCmu promotes alphavbeta3 integrin recycling and delivery to nascent focal adhesions. EMBO Journal, 23, 2531–543.

    Article  PubMed  CAS  Google Scholar 

  56. Ivaska, J., Vuoriluoto, K., Huovinen, T., Izawa, I., Inagaki, M., & Parker, P. J. (2005). PKCepsilon-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO Journal, 24, 3834–845.

    Article  PubMed  CAS  Google Scholar 

  57. Naslavsky, N., & Caplan, S. (2005). C-terminal EH-domain-containing proteins: consensus for a role in endocytic trafficking, EH. Journal of Cell Science, 118, 4093–101.

    Article  PubMed  CAS  Google Scholar 

  58. Chuang, Y. Y., Tran, N. L., Rusk, N., Nakada, M., Berens, M. E., & Symons, M. (2004). Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Research, 64, 8271–275.

    Article  PubMed  CAS  Google Scholar 

  59. Silletti, S., Kessler, T., Goldberg, J., Boger, D. L., & Cheresh, D. A. (2001). Disruption of matrix metalloproteinase 2 binding to integrin alpha vbeta 3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 119–24.

    Article  PubMed  CAS  Google Scholar 

  60. Echarri, A., & Del Pozo, M. A. (2006). Caveolae internalization regulates integrin-dependent signaling pathways. Cell Cycle, 5, 2179–182.

    PubMed  CAS  Google Scholar 

  61. Schwartz, M. A. (1997). Integrins, oncogenes, and anchorage independence. Journal of Cell Biology, 139, 575–78.

    Article  PubMed  CAS  Google Scholar 

  62. Koleske, A. J., Baltimore, D., & Lisanti, M. P. (1995). Reduction of caveolin and caveolae in oncogenically transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 1381–385.

    Article  PubMed  CAS  Google Scholar 

  63. Lee, H., Park, D. S., Razani, B., Russell, R. G., Pestell, R. G., & Lisanti, M. P. (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (. -. /. -. ) null mice show mammary epithelial cell hyperplasia. American Journal of Pathology, 161, 1357–369.

    PubMed  CAS  Google Scholar 

  64. Williams, T. M., Medina, F., Badano, I., Hazan, R. B., Hutchinson, J., Muller, W. J., et al. (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. Journal of Biological Chemistry, 279, 51630–1646.

    Article  PubMed  CAS  Google Scholar 

  65. Engelman, J. A., Wykoff, C. C., Yasuhara, S., Song, K. S., Okamoto, T., & Lisanti, M. P. (1997). Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. Journal of Biological Chemistry, 272, 16374–6381.

    Article  PubMed  CAS  Google Scholar 

  66. Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nature Reviews Cancer, 2, 133–42.

    Article  PubMed  Google Scholar 

  67. Ning, Y., Zeineldin, R., Liu, Y., Rosenberg, M., Stack, M. S., & Hudson, L. G. (2005). Down-regulation of integrin alpha2 surface expression by mutant epidermal growth factor receptor (EGFRvIII) induces aberrant cell spreading and focal adhesion formation. Cancer Research, 65, 9280–286.

    Article  PubMed  CAS  Google Scholar 

  68. Ning, Y., Buranda, T., & Hudson, L. G. (2007). Activated EGF receptor induces integrin alpha 2 internalization via caveolae/raft-dependent endocytic pathway. Journal of Biological Chemistry (in press).

  69. Ramsay, A. G., Keppler, M. D., Jazayeri, M., Thomas, G. J., Parsons, M., Violette, S. M., et al. (2007). HSI-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alpha v beta 6. Cancer Research, 67, 5275–284.

    Article  PubMed  CAS  Google Scholar 

  70. Bates, R. C., Bellovin, D. I., Brown, C., Maynard, E., Wu, B., Kawakatsu, H., et al. (2005). Transcriptional activation of integrin beta6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. Journal of Clinical Investigation, 115, 339–47.

    PubMed  CAS  Google Scholar 

  71. Nystrom, M. L., Thomas, G. J., Stone, M., Mackenzie, I. C., Hart, I. R., & Marshall, J. F. (2005). Development of a quantitative method to analyse tumour cell invasion in organotypic culture. Journal of Pathology, 205, 468–75.

    Article  PubMed  CAS  Google Scholar 

  72. Jekely, G., Sung, H. H., Luque, C. M., & Rorth, P. (2005). Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Developmental Cell, 9, 197–07.

    Article  PubMed  CAS  Google Scholar 

  73. Orth, J. D., & McNiven, M. A. (2006). Get off my back! Rapid receptor internalization through circular dorsal ruffles. Cancer Research, 66, 11094–1096.

    Article  PubMed  CAS  Google Scholar 

  74. Orth, J. D., Krueger, E. W., Weller, S. G., & McNiven, M. A. (2006). A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Research, 66, 3603–610.

    Article  PubMed  CAS  Google Scholar 

  75. Yamaguchi, H., & Condeelis, J. (2006). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica Et Biophysica Acta, 1773(5), 642–52.

    PubMed  Google Scholar 

  76. Yoon, S. O., Shin, S., & Mercurio, A. M. (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Research, 65, 2761–769.

    Article  PubMed  CAS  Google Scholar 

  77. Cheng, K. W., Lahad, J. P., Kuo, W. L., Lapuk, A., Yamada, K., Auersperg, N., et al. (2004). The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nature Medicine, 10, 1251–256.

    Article  PubMed  CAS  Google Scholar 

  78. Miaczynska, M., Pelkmans, L., & Zerial, M. (2004). Not just a sink: endosomes in control of signal transduction. Current Opinion in Cell Biology, 16, 400–06.

    Article  PubMed  CAS  Google Scholar 

  79. Kermorgant, S., & Parker, P. J. (2005). c-Met signalling: spatio-temporal decisions. Cell Cycle, 4, 352–55.

    PubMed  CAS  Google Scholar 

  80. Kermorgant, S., Zicha, D., & Parker, P. J. (2004). PKC controls HGF-dependent c-Met traffic, signalling and cell migration. EMBO Journal, 23, 3721–734.

    Article  PubMed  CAS  Google Scholar 

  81. Tucker, G. C. (2006). Integrins: Molecular targets in cancer therapy. Current Oncology Reports, 80, 96–03.

    Article  Google Scholar 

  82. Dicara, D., Rapisarda, C., Sutclifffe, J. L., Violette, S. M., Weinreb, P. H., Hart, I. R., et al. (2007). Structure-function analysis of RGD-helix motifs in alpha vbeta 6 integrin ligands. Journal of Biological Chemistry, 282, 9657–665.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian R. Hart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramsay, A.G., Marshall, J.F. & Hart, I.R. Integrin trafficking and its role in cancer metastasis. Cancer Metastasis Rev 26, 567–578 (2007). https://doi.org/10.1007/s10555-007-9078-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9078-7

Keywords

Navigation