Map** Functional Alterations in the CNS With [14C]Deoxyglucose

  • Chapter
Handbook of Psychopharmacology

Abstract

The advent of the autoradiographic [14C]-2-deoxyglucose technique (Sokoloff et al., 1977) has provided neuroscientists with an enormously potent tool with which to investigate functional events within the central nervous system. Two simple premises provide the conceptual basis for this novel approach. First, the energy requirements of cerebral tissue are derived almost exclusively from the aerobic catabolism of glucose (Sokoloff, 1977; Siesjo, 1978). Second, functional activity within any region of the central nervous system is intimately and directly related to energy consumption within that region (see Kennedy et al., 1975; Sokoloff, 1977). Thus, the ability to determine the rate of glucose consumption simultaneously in all neuroanatomically defined regions of the CNS of conscious animals by the use of the 2-deoxyglucose technique has been widely utilized to provide new insight into CNS processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, W. C., Delanoy, R. L., Dunn, A. J., and Zornetzer, S. F., 1979, Locus coeruleus stimulation decreases deoxyglucose uptake in ipsilateral mouse cerebral cortex, Brain Res. 172: 387–392.

    PubMed  CAS  Google Scholar 

  • Aghajanian, G. K., and Bunney, B. S., 1977, Dopamine “Autoreceptors”: pharmacological characterization by microiontophoretic single cell recording studies, Naunyn-Schmie- deberg’s Arch. Pharmacol. 297: 1–7.

    CAS  Google Scholar 

  • Aghajanian, G. K., and Wang, R. Y., 1977, Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique, Brain Res. 122: 229–242.

    PubMed  CAS  Google Scholar 

  • Ahlenius, S., 1978, Potentiation by haloperidol of the catalepsy produced by lesions in the parafascicular nucleus of the rat, Brain res. 150: 648–652.

    PubMed  CAS  Google Scholar 

  • Alexander, R. W., Davis, J. N., and Lefkowitz, R. J., 1975, Direct identification and characterisation of β-adrenergic receptors in rat brain, Nature (London) 258: 437–440.

    CAS  Google Scholar 

  • Andersson, K., Schwarcz, R., and Fuxe, K., 1980, Compensatory bilateral changes in dopamine turnover after striatal kainite lesion, Nature (London) 283: 94–96.

    CAS  Google Scholar 

  • Bachelard, H. S., 1971, Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex in vitro, J. Neurochem. 18: 213–222.

    PubMed  CAS  Google Scholar 

  • Baraldi, M., Grandison, L., and Guidotti, A., 1979, Distribution and metabolism of muscimol in the brain and other tissues of the rat, Neuropharmacology 18: 57–62.

    PubMed  CAS  Google Scholar 

  • Barker, J. L., 1977, Physiological roles of peptides in the nervous system, in: Peptides in Neurobiology ( H. Gainer, ed.), pp. 295–343, Plenum Press, New York.

    Google Scholar 

  • Basinger, S. F., Gordon, W. C., and Lam, D. M. K., 1979, Differential labelling of retinal neurones by 3H-2-deoxyglucose, Nature (London) 280: 682–684.

    CAS  Google Scholar 

  • Beckstead, R. M., 1976, Convergent thalamic and mesencephalic projections to the anterior medial cortex in the rat, J. Comp. Neurol 166: 403–416.

    PubMed  CAS  Google Scholar 

  • Beckstead, R. M., Domesick, V. B., and Nauta, W.J. H., 1979, Efferent connections of the substantia nigra and ventral tegmental area in the rat, Brain Res. 175: 191–217.

    PubMed  CAS  Google Scholar 

  • Berntman, L., Carlsson, C., Hagerdal, M., and Siesjo, B. K., 1977, Circulatory and metabolic effects in the brain induced by amphetamine sulphate, Acta Physiol. Scand 102: 310–323.

    Google Scholar 

  • Biggio, G., and Guidotti, A., 1977, Regulation of cyclic GMP by a striatal dopaminergic mechanism, Nature (London) 265: 240–242.

    CAS  Google Scholar 

  • Blackwood, D. H. R., and Kapoor, V., 1980, Regional changes in cerebral glucose utilization in kindled rats during convulsions, Br. J. Pharmacol 68: 133 P.

    Google Scholar 

  • Borgström, L., Chapman, A. G., and Siesjo, B. K., 1976a, Glucose consumption in the cerebral cortex of rat during bicuculline-induced status epilepticus, J. Neurochem 27: 971–973.

    Google Scholar 

  • Borgström, L., Norberg, K., and Siesjo, B. K., 1976b;, Glucose consumption in rat cerebral cortex in normoxia, hypoxia and hypercapnia, Acta Physiol. Scand 96: 569–574.

    Google Scholar 

  • Bradbury, A. F., Smyth, D. G., Snell, C. R., Birdsall, N. J. M., and Hulme, E. C., 1976, C fragment of lipotropin has a high affinity for brain opiate receptors, Nature 260: 793–795.

    CAS  Google Scholar 

  • Brown, J. H., and Makman, M. H., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’,5’-cyclic monophosphate formation in intact retina, Proc. Natl. Acad. Sci. U.S.A 69: 539–543.

    PubMed  CAS  Google Scholar 

  • Brown, J. H., and Makman, M. H., 1973, Influence of neuroleptic drugs and apomorphine on dopamine-sensitive adenylate cyclase of retina, J. Neurochem 21: 477–479.

    PubMed  CAS  Google Scholar 

  • Brown, L. L., and Wolfson, L. I., 1978, Apomorphine increases glucose utilization in the substantia nigra, subthalamic nucleus, and corpus striatum of rat, Brain Res. 140: 188–193.

    PubMed  CAS  Google Scholar 

  • Brown, L. L., Makman, M. H., Wolfson, L. I., Dvorkin, B., Warner, C., and Katzman, R., 1979, A direct role of dopamine in the rat subthalamic nucleus and an adjacent intrapeduncular area, Science 206: 1416–1418.

    PubMed  CAS  Google Scholar 

  • Brown, M., and Vale, W., 1975, Central nervous system effects of hypothalamic peptides, Endocrinology 96: 1333–1336.

    PubMed  CAS  Google Scholar 

  • Brownstein, M., 1982, Hypothalamic Releasing Hormones, Non-endocrine Aspects, in: Handbook of Psychopharmacology (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 17, in press, Plenum Press, New York.

    Google Scholar 

  • Bunney, B. S., and Aghajanian, G. K., 1976, Dopamine and norepinephrine innervated cells in the rat prefrontal cortex: pharmacological differentiation using microiontophoretic techniques, Life Sci. 19: 1783–1792.

    PubMed  CAS  Google Scholar 

  • Bunney, B. S., Aghajanian, G. K., and Roth, R. H., 1973a, Comparison of effects of l- dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurons, Nature New Biol 245: 123–125.

    PubMed  CAS  Google Scholar 

  • Bunney, B. S., Walters, J. R., Roth, R. H., and Aghajanian, G. K., 19736, Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity, J. Pharmacol Exp. Ther 185: 560–571.

    Google Scholar 

  • Burkard, W. P., Pieri, L., and Haefely, W., 1976, In vivo changes of guanosine 3’,5’-cyclic phosphate in rat cerebellum by dopaminergic mechanisms,J. Neurochem 27: 297–298.

    PubMed  CAS  Google Scholar 

  • Butterworth, R. F., Poignant, J.-C., and Barbeau, A., 1975, Apomorphine and piribedil in rats: biochemical and pharmacologic studies, Adv. Neurol 9: 307–326.

    PubMed  CAS  Google Scholar 

  • Casagrande, V. A., Harting, J. K., Hall, W. C., and Diamond, I. T., 1972, Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers, Science 177: 444–447.

    PubMed  CAS  Google Scholar 

  • Cedarbaum, J. M., and Aghajanian, G. K., 1976, Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation of the a-antagonist piperoxane, Brain Res. 112: 413–419.

    PubMed  CAS  Google Scholar 

  • Chase, T. N., and Murphy, D. L., 1973, Serotonin and central nervous system function, Annu. Rev. Pharmacol 13: 181–197.

    PubMed  CAS  Google Scholar 

  • Cheney, D. L., Zsilla, G., and Costa, E., 1977, Acetylcholine turnover rate in N. accumbens, N. caudatus, globus pallidus, and substantia nigra: action of cataleptogenic and nonca- taleptogenic antipsychotics, Adv. Biochem. Psychopharmacol 16: 179–186.

    PubMed  CAS  Google Scholar 

  • Cheramy, A., Leviel, V., and Glowinski, J., 1981, Dendritic release of dopamine in the substantia nigra, Nature (London) 289:537–542.

    Google Scholar 

  • Collins, R. C., 1978a, Kindling of neuroanatomic pathways during recurrent focal penicillin seizures, Brain Res. 150: 503–517.

    PubMed  CAS  Google Scholar 

  • Collins, R. C., 1978b, Use of cortical circuits during focal penicillin seizures: an autoradiographic study with [14C]-deoxyglucose, Brain Res. 150: 487–501.

    PubMed  CAS  Google Scholar 

  • Collins, R. C., Kennedy, C., Sokoloff, L., and Plum, F., 1976, Metabolic anatomy of focal motor seizures, Arch. Neurol 33: 536–542.

    PubMed  CAS  Google Scholar 

  • Collins, R. C., McLean, M., and Olney, J., 1980, Cerebral metabolic response to systemic kainic acid: 14C-deoxyglucose studies, Life Sci. 27: 855–862.

    PubMed  CAS  Google Scholar 

  • Cools, A. R., 1979, GABA and thalamo-striatal control of apomorphine-like effects, in: GABA Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kriiger, and H. Kofod, eds.), pp. 501–517, Munksgaard, Copenhagen.

    Google Scholar 

  • Costentin, J., Protais, P., and Schwartz, J. C., 1975, Rapid and dissociated changes in sensitivities of different dopamine receptors in mouse brain, Nature (London) 257: 405–407.

    CAS  Google Scholar 

  • Cox, B. M., Opheim, K. E., Teschemaker, H., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties, Life Sci. 16: 1772–1782.

    Google Scholar 

  • Coyle, J. T., Biziere, K., Campochiaro, P., Schwarcz, R., and Zaczek, R., 1979, Kainic acid-induced lesion of the striatum as an animal model of Huntington’s Chorea, in: GABA Neurotransmitters ( P. Krogsgaard-Larsen, J. Scheel-Kriiger, and H. Kofod, eds.), pp. 419–431, Munksgaard, Copenhagen.

    Google Scholar 

  • Crane, P. D., Braun, L. D., Cornford, E. M., Cremer, J. E., Glass, J. M., and Oldendorf, W. H., 1978, Dose-dependent reduction of glucose utilization by pentobarbital in rat brain, Stroke 9: 12–18.

    PubMed  CAS  Google Scholar 

  • Crane, P. D., Braun, L. D., Cornford, E. M., Nyerges, A. M., and Oldendorf, W. H., 1980, Cerebral cortical glucose utilization in the conscious rat: evidence for a circadian rhythm, J Neurochem. 34: 1700–1706.

    PubMed  CAS  Google Scholar 

  • Creese, I., 1982, Dopamine Receptors, in: Handbook of Psychopharmacology (L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.) Vol. 16, in press, Plenum Press, New York.

    Google Scholar 

  • Cremer, J. E., Cunningham, V. J., Ray, D. E., and Sarna, G. S., 1980, Regional changes in brain glucose utilization in rats given a pyrethroid insecticide, Brain Res. 194: 278–282.

    PubMed  CAS  Google Scholar 

  • Crosby, G., Tannenbaum, B. A., and Sokoloff, L., 1981, Ketamine alters regional glucose utilization in rat brain, Anesthesiol. 53: S6.

    Google Scholar 

  • de Kloet, R., and de Wied, D., 1980, The brain as target tissue for hormones of pituitary origin: behavioural and biochemical studies, Frontiers Neuroendocrinol. 6: 157–201.

    Google Scholar 

  • Delanoy, R. L., and Dunn, A. J., 1978, Mouse brain deoxyglucose uptake after footshock, ACTH analogs, α-MSH, corticosterone, or lysine vasopressin, Pharmacol. Biochem. Behav 9: 21–26.

    PubMed  CAS  Google Scholar 

  • Delgado, J. M. R., and Hanai, T., 1966, Intracerebral temperatures in free-moving cats, Am. J. Physiol 211 (3): 755–769.

    PubMed  CAS  Google Scholar 

  • Des Rosiers, M. H., and Descarries, L., 1978, Adaptation de la méthode au désoxyglucose à l’échelle cellulaire: préparation histologique du systeme nerveux central en vue de la radioautographie à haute résolution, C.R. Acad. Sci. Paris 287: 153–155.

    Google Scholar 

  • Des Rosiers, M. H., Kennedy, C., Sakurada, O., Shinohara, M., and Sokoloff, L., 1978a, Effects of hypercapnia on cerebral oxygen and glucose consumption in the conscious rat, Stroke 9: 98.

    Google Scholar 

  • Des Rosiers, M. H., Sakurada, O., Jehle, J., Shinohara, M., Kennedy, C., and Sokoloff, L., 1978b, Functional plasticity in the immature striate cortex of the monkey shown by the [14C]deoxyglucose method, Science 220: 447–449.

    Google Scholar 

  • de Wied, D., and Gispen, W. H., 1977, Behavioral effects of peptides, in: Peptides in Neurobiology ( H. Gainer, ed.), 397–448, Plenum Press, New York.

    Google Scholar 

  • de Wied, D., Witter, A., and Greven, H. M., 1975, Behaviorally active ACTH analogs, Biochem. Pharmacol 24: 1463–1468.

    PubMed  Google Scholar 

  • DiChiara, G., Porceddu, M. L., Morelli, M., Mulas, M. L., and Gessa, G. L., 1979, Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus of the rat, Brain Res. 176: 273–284.

    CAS  Google Scholar 

  • Dickenson, A. H., 1977, Specific responses of rat raphé neurones to skin temperature, J. Physiol 273: 277–293.

    PubMed  CAS  Google Scholar 

  • Divac, I., and Diemer, N. H., 1980. Prefrontal system in the rat visualized by means of labeled deoxyglucose-further evidence for functional heterogeneity of the neostriatum, J. Comp. Neurol 190: 1–13.

    PubMed  CAS  Google Scholar 

  • Doherty, J. D., Simonovic, M., So, R., and Meltzer, H. Y., 1980, The effect of phencyclidine on dopamine synthesis and metabolism in rat striatum, Eur. J. Pharmacol 65: 139–149.

    Google Scholar 

  • Domesick, V. B., 1969, Projections from the cingulate cortex in the rat, Brain Res. 12: 296–320.

    PubMed  CAS  Google Scholar 

  • Dow-Edwards, D., Dam, M., Peterson, J. M., Rapoport, S. I., and London, E. D., 1981, Effect of oxotremorine on local cerebral glucose utilization in motor system regions of the rat brain, Brain Res. 226: 281–289.

    PubMed  CAS  Google Scholar 

  • Dowling, J. E., and Ehinger, B., 1978, Synaptic organization of the dopaminergic neurons in the rabbit retina, J. Comp. Neurol 180: 203–220.

    PubMed  CAS  Google Scholar 

  • Drew, G. M., 1976, Effects of a-adrenoreceptor agonists and antagonists on pre- and postsynaptically located α-adrenoreceptors, Eur. J. Pharmacol 36: 313–320.

    PubMed  CAS  Google Scholar 

  • Dudley, R. E., Nelson, S. R., and Samson, F., 1982, Influence of chloralose on brain regional glucose utilization, Brain Res. 233: 173–180.

    PubMed  CAS  Google Scholar 

  • Dunn, A. J., and Gispen, W. H., 1977, How ACTH acts on the brain, Biobehav. Res 1: 15–23.

    CAS  Google Scholar 

  • Ehinger, B., and Falck, B., 1969, Adrenergic retinal neurons of some New World monkeys, Z. Zellforsch 97: 285–297.

    PubMed  CAS  Google Scholar 

  • Emson, P. C., and Lindvall, O., 1979, Distribution of putative neurotransmitters in the neocortex, Neuroscience 4: 1–30.

    PubMed  CAS  Google Scholar 

  • Estler, C.-J., and Ammon, H. P. T., 1967, The influence of propranolol on the met- amphetamine-induced changes of cerebral function and metabolism, J. Neurochem 14: 799–805.

    CAS  Google Scholar 

  • Fielding, S., and Lal, H., 1978, Behavioural Actions of Neuroleptics, in: “Handbook of Psychopharmacology” ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 10, pp. 91–128, Plenum Press, New York.

    Google Scholar 

  • Fields, J. Z., Reisine, T. D., and Yamamura, H. I., 1977, Biochemical demonstration of dopaminergic receptors in rat and human brain using [3H]spiroperidol, Brain Res. 136: 578–584.

    PubMed  CAS  Google Scholar 

  • Finnegan, K. T., Kanner, M. I., and Meltzer, H. Y., 1976, Phencyclidine-induced rotational behavior in rats with nigrostriatal lesions and its modulation by dopaminergic and cholinergic agents, Pharmacol. Biochem. Behav 5: 651–660.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., Gottesfeld, Z., and Grofova, I., 1978, Distribution of glutamate decarboxylase, choline acetyltransferase, and aromatic amino acid decarboxylase in the basal ganglia of normal and operated rats. Evidence for striatopallidal, striatoentopeduncular, and striatonigral GABAergic fibers, Brain Res. 143: 125–138.

    PubMed  CAS  Google Scholar 

  • Fox, M., and Williams, T. D., 1970, The caudate nucleus-cerebellar pathways: an electrophysiological study of their route through the midbrain, Brain Res. 20: 140–144.

    PubMed  CAS  Google Scholar 

  • Fuxe, K., and Sjoqvist, F., 1972, Hypothermic effect of apomorphine in the mouse, J. Pham. Pharmacol 24: 702–705.

    CAS  Google Scholar 

  • Gabriel, M., Foster, K., and Orona, E., 1980, Interation of laminae of the cingulate cortex with the anteroventral thalamus during behavioral learning, Science 208: 1050–1052.

    PubMed  CAS  Google Scholar 

  • Gallager, D. W., Pert, A., and Bunney, W. E., Jr., 1978, Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium, Nature (London) 273: 309–312

    CAS  Google Scholar 

  • Gibson, G. E., Jope, R., and Blass, J. P., 1975, Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces, Biochem. J 148: 17–23.

    PubMed  CAS  Google Scholar 

  • Ginsberg, M. D., and Reivich, M., 1979, Use of the 2-deoxyglucose method of local cerebral glucose utilization in the abnormal brain: evaluation of the lumped constant during ischemia, Acta Neurol. Scand. 60(Suppl. 72): 226–227.

    Google Scholar 

  • Gjedde, A., and Crone, C., 1975, Induction processes in blood-brain transfer of ketone bodies during starvation, Am. J. Physiol 229: 1165–1169.

    PubMed  CAS  Google Scholar 

  • Goldstein, G. W., Wolinsky, J. S., Csejtey, J., and Diamond, I., 1975, Isolation of metabolically active capillaries from rat brain, J. Neurochem 25: 715–717.

    PubMed  CAS  Google Scholar 

  • Goochee, C., Rasband, W., and Sokoloff, L., 1980, Computerized densitometry and color coding of [14C]-deoxyglucose autoradiographs, Ann. Neurol 7: 359–370.

    PubMed  CAS  Google Scholar 

  • Grome, J., Kelly, P., McCulloch, J., and Pickard, J. D., 1980, Effect of indomethacin on local cerebral glucose utilization, J. Physiol 303: 69 P.

    Google Scholar 

  • Grome, J. J., and McCulloch, J., 1981a, The effects of chloral hydrate anaesthesia on the metabolic response in the substantia nigra to apomorphine, Brain Res. 214: 223–228.

    Google Scholar 

  • Grome, J. J., and McCulloch, J., 1981b, The effect of chloral hydrate anaesthesia on the cerebral metabolic response to apomorphine administration, Eur. Neurol 20: 176–179.

    PubMed  CAS  Google Scholar 

  • Haggendal, J., and Malmfors, T., 1965, Identification and cellular localization of the catecholamines in the retina and choroid of the rabbit, Acta Physiol. Scand 64: 58–66.

    CAS  Google Scholar 

  • Hand, P. J., Greenberg, J. H., Miselis, R. R., Weller, W. L., and Reivich, M., 1978, A normal and altered cortical column: a quantitative and qualitative 14C-2-deoxyglucose (2DG) map** study, Neurosci. Abstr 4: 553.

    Google Scholar 

  • Hattori, T., Singh, V. K., McGeer, E. G., and McGeer, P. L., 1976, Immunohistochemical localization of choline acetyltransferase containing neostriatal neurons and their relationship with dopaminergic synapses, Brain Res. 102: 164–173.

    PubMed  CAS  Google Scholar 

  • Hawkins, R. A., and Biebuyck, J. F., 1979, Ketone bodies are selectively used by individual brain regions, Science 205: 325–327.

    PubMed  CAS  Google Scholar 

  • Hawkins, R., Hass, W. K., and Ransohoff, J., 1979, Measurement of regional brain glucose utilization in vivo using [2-14C]glucose, Stroke 10: 690–703.

    PubMed  CAS  Google Scholar 

  • Hawkins, R. A., and Miller, A. L., 1978, Loss of radioactive 2-deoxy-d-glucose-6-phosphate from brains of conscious rats: implications for quantitative autoradiographic determination of regional glucose utilization, Neuroscience 3: 251–258.

    PubMed  CAS  Google Scholar 

  • Hawkins, R. A., Williamson, D. H., and Krebs, A. H., 1971, Ketone-body utilization by adult and suckling rat brain in vivo, Biochem. J. 122: 13 - 18.

    CAS  Google Scholar 

  • Hawkins, R. A., Miller, A. L., Cremer, J. E., and Veech, R. L., 1974, Measurement of the rate of glucose utilization by rat brain in vivo, J. Neurochem. 23: 917–923.

    CAS  Google Scholar 

  • Heal, D. J., and Green, A. R., 1979, Administration of thyrotropin releasing hormone (TRH) to rats releases dopamine in n. accumbens but not in n. caudatus, Neuropharmacology 18: 23 - 31.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., 1981, Anesthetics and the habenulointerpeduncular system: selective sparing of metabolic activity, Brain Res. 210: 461–466.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., and Nauta, W. J. H., 1977, Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem, J. Comp. Neurol 173: 123–146.

    PubMed  CAS  Google Scholar 

  • Herkenham, M., and Nauta, W. J. H., 1979, Efferent connections of the habenular nuclei in the rat, J. Comp. Neurol 187: 19–48.

    PubMed  CAS  Google Scholar 

  • Hopkins, D. A., and Niessen, L. W., 1976, Substantia nigra projections to the reticular formation, superior colliculus, and central gray in the rat, cat, and monkey, Neurosci. Lett 2: 253–259.

    PubMed  CAS  Google Scholar 

  • Horn, A. S., Cuello, A. C., and Miller, R. J., 1974, Dopamine in the mesolimbic system of the rat brain: endogenous levels and the effects of drugs on the uptake mechanism and stimulation of adenylate cyclase activity, J. Neurochem 22: 265–270.

    PubMed  CAS  Google Scholar 

  • Hostetler, K. Y., and Landau, B. R., 1967, Estimation of pentose phosphate contribution to glucose metabolism in tissue in vivo, Biochemistry 6: 2961–2977.

    CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculocortical fibers in the macaque monkey, J. Comp. Neurol 146: 421–450.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and Lam, D. M. K., 1974, Autoradiographic demonstration of ocular dominance columns in the monkey striate cortex by means of transneuronal transport, Brain Res. 79: 273–279.

    PubMed  Google Scholar 

  • Hubel, D. H., Wiesel, T. N., and Stryker, M. P., 1978, Anatomical demonstration of orientation columns in macaque monkey,/. Comp. Neurol 177: 361 - 380.

    CAS  Google Scholar 

  • Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., 1975, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature (London) 258: 577–579.

    CAS  Google Scholar 

  • Hunt, S. P., and Schmidt, J., 1978, Some observations of the binding patterns of α- bungarotoxin in the central nervous system of the rat, Brain Res. 157: 213–232.

    PubMed  CAS  Google Scholar 

  • Ingvar, M., Abdul-Rahman, A., and Siesjo, B. K., 1980, Local cerebral glucose consumption in the artificially ventilated rat: influence of nitrous oxide analgesia and of phenobarbital anesthesia, Acta Physiol. Scand 109: 177–185.

    PubMed  CAS  Google Scholar 

  • Isaacson, R. L., and Pribram, K. H., 1975, The Hippocampus, Vols. 1 and 2, Plenum Press, New York.

    Google Scholar 

  • Jackson, D. M., Andén, N.-E., and Dahlstrom, A., 1975, A functional effect of dopamine in the nucleus accumbens and in some other dopamine-rich parts of the rat brain, Psychopharmacologia (Berlin) 45: 139–149.

    CAS  Google Scholar 

  • Jacquet, Y. F., and Lajtha, A., 1974, Paradoxical effects after microinjection of morphine in the periaqueductal gray matter of the rat, Science 185: 1055–1057.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Marks, N., 1976, The C-fragment of P-Iipotropin: an endogenous neuroleptic or antipsychotogen? Science 194: 632–635.

    PubMed  CAS  Google Scholar 

  • Janssen, P. A. J., and van Bever, W. F. M., 1978, Structure-activity relationships of the butyrophenones and diphenylbutylpiperidines, in: Handbook of Psychopharmacology (L. L.

    Google Scholar 

  • Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 10, pp. 1–35, Plenum Press, New York.

    Google Scholar 

  • Johnston, G. A. R., 1978, Neuropharmacology of amino acid inhibitory transmitters, Annu. Rev. Pharmacol. Toxicol 18: 269–289.

    PubMed  CAS  Google Scholar 

  • Johnston, M. V., McKinney, M., and Coyle, J. T., 1979, Evidence for a cholinergic projection to neocrotex from neurons in basal forebrain, Proc. Natl. Acad. Sci. U.S.A 76: 5392–5396.

    PubMed  CAS  Google Scholar 

  • Kadekaro, M., Savaki, H., and Sokoloff, L., 1980, Metabolic map** of neural pathways involved in gastrosecretory response to insulin hypoglycaemia in the rat, J. Physiol 300: 393–407.

    PubMed  CAS  Google Scholar 

  • Karobath, M., Placheta, P., and Lippitsch, M., 1979, Is stimulation of benzodiazepine receptor binding mediated by a novel GABA receptor? Nature (London) 278: 748–749.

    CAS  Google Scholar 

  • Kebabian, J. W., 1978, A sensitive enzymatic-radioisotopic assay for apomorphine, J. Neurochem 30: 1143–1148.

    PubMed  CAS  Google Scholar 

  • Kebabian, J. W., and Saavedra, J. M., 1976, Dopamine-sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dendrites, Science 193: 683–685.

    PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor,” Proc. Natl. Acad. Sci. U.S.A 69: 2145–2149.

    PubMed  CAS  Google Scholar 

  • Kehr, W., Carlsson, A., and Lindqvist, M., 1975, Biochemical aspects of dopamine agonists, Adv. Neurol. 9: 185–195.

    Google Scholar 

  • Kelly, P. A. T., and McCulloch, J., 1981a, Heterogeneous depression of glucose utilization in the caudate nucleus by GABA agonists, Brain Res. 209: 458–463.

    Google Scholar 

  • Kelly, P. A. T., and McCulloch, J., 1981b, Differences in the response of rat superior colliculus to muscimol and THIP, Br. J. Pharmacol 74: 815P–816 P.

    Google Scholar 

  • Kelly, P. A. T., and McCulloch, J., 1981c, Errors associated with modifications of the quantitative 2-deoxyglucose technique, J. CBF Met. l(Suppl. 1 ): S60–S61.

    Google Scholar 

  • Kelly, P. A. T., and McCulloch, J., 1982a, The effects of the putative GABAergic agonists, muscimol and THIP, upon local cerebral glucose utilizations. J. Neurochem 39: 613–624.

    PubMed  CAS  Google Scholar 

  • Kelly, P. A. T. and McCulloch, J., 1982b, GABAergic and dopaminergic influence on glucose utilization in the extrapyramidal system, Br. J. Pharmacol 76: 290 P.

    Google Scholar 

  • Kelly, P. A. T., Graham, D. I., and McCulloch, J., 1982, Specific alterations in local cerebral glucose utilization following striatal lesions, Brain Res. 233: 157–172.

    PubMed  CAS  Google Scholar 

  • Kemp, J. M., and Powell, T. P. S., 1971, The connections of the striatum and globus pallidus: synthesis and speculation, Philos. Trans. R. Soc. London B 262: 441–457.

    CAS  Google Scholar 

  • Kennedy, C., Des Rosiers, M. H., Jehle, J. W., Reivich, M., Sharp, F., and Sokoloff, L., 1975, Map** of functional neural pathways by autoradiographic survey of local metabolic rate with [14C]deoxyglucose, Science 187: 850–853.

    PubMed  CAS  Google Scholar 

  • Kennedy, C., Des Rosiers, M. H., Sakurada, O., Shinohara, M., Reivich, M., Jehle, J. W., and Sokoloff, L., 1976, Metabolic map** of the primary visual system of the monkey by means of the autoradiographic [14C]deoxyglucose technique, Proc. Natl. Acad. Sci. U.S.A 73: 4230–4234.

    PubMed  CAS  Google Scholar 

  • Kennedy, C., Sakurada, O., Shinohara, M., Jehle, J., and Sokoloff, L., 1978, Local cerebral glucose utilization in the normal conscious macaque monkey, Ann. Neurol 4: 293–301.

    PubMed  CAS  Google Scholar 

  • Kimura, H., McGeer, E. G., and McGeer, P. L., 1980, Metabolic alterations in an animal model of Huntington’s disease using the 14C-deoxyglucose method, J. Neural Transm. Suppl 16: 103–109.

    PubMed  CAS  Google Scholar 

  • Klemm, N., Murrin, L. C., and Kuhar, M. J., 1979, Neuroleptic and dopamine receptors: autoradiographic localization of [3H]-spiperone in rat brain, Brain Res. 169: 1–9.

    PubMed  CAS  Google Scholar 

  • Kliot, M., and Poletti, C. E., 1979, Hippocampal afterdischarges: differential spread of activity shown by the [14C]deoxyglucose technique, Science 204: 641–643.

    PubMed  CAS  Google Scholar 

  • Kozlowski, M. R., and Marshall, J. F., 1980, Plasticity of [14C]2-deoxy-d-glucose incorporation into neostriatum and related structures in response to dopamine neuron damage and apomorphine replacement, Brain Res. 197: 167–183.

    PubMed  CAS  Google Scholar 

  • Krnjevic, K., 1975, Electrophysiology of dopamine receptors, Adv. Neurol 9: 13–24.

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Hjeds, H., Curtis, D. R., Lodge, D., and Johnston, G. A. R., 1979a, Dihydromuscimol, thiomuscimol, and related heterocyclic compounds as GABA analogues, J. Neurochem 32: 1717–1724.

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Scheel-Krüger, J., and Kofod, H., 1979b, GABA Neurotransmitters, Munksgaard, Copenhagen.

    Google Scholar 

  • Kuhar, M. J., 1975, Cholinergic neurons: Septo-hippocampal relationships, in: The Hippocampus ( R. L. Isaacson and K. H. Pribram, eds.), Vol. 1, pp. 269–283, Plenum Press, New York.

    Google Scholar 

  • Kuschinsky, W., Suda, S., and Sokoloff, L., 1981, Local cerebral glucose utilization and blood flow during metabolic acidosis, Am. J. Physiol 241: H772–H777.

    PubMed  CAS  Google Scholar 

  • Langer, S. Z., 1977, Presynaptic receptors and their role in the regulation of transmitter release, Br. J. Pharmacol 60: 481–497.

    PubMed  CAS  Google Scholar 

  • Larsen, J. K., and Divac, I., 1978, Selective ablations within the prefrontal cortex of the rat and performance of delayed alternation, Physiol. Psychol 6: 15–17.

    Google Scholar 

  • Leonard, B. E., and Tonge, S. R., 1969, The effects of some hallucinogenic drugs upon the metabolism of noradrenaline, Life Sci. 8: 815–825.

    PubMed  CAS  Google Scholar 

  • Leonard, B. E., and Tonge, S. R., 1971, Variation in hydroxytryptamine metabolism in the rat: effects on the neurochemical response to phencyclidine, J. Pharm. Pharmacol 23: 711–712.

    PubMed  Google Scholar 

  • Levine, M. S., Hull, C. D., Buchwald, N. A., Garcia-Rill, E., Heller, A., and Erinoff, L., 1977, The spontaneous firing patterns of forebrain neurons. III. Prevention of induced asymmetries in caudate neuronal firing rates by unilateral thalamic lesions, Brain Res. 131: 215–225.

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., and Shute, C. C. D., 1978, Cholinergic Pathways in CNS, in: Handbook of Psychopharmacology ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 9, pp. 315–355, Plenum Press, New York.

    Google Scholar 

  • Lindvall, O., and Bjorklund, A., 1978, Organization of catecholamine neurons in the rat central nervous system, in Handbook of Psychopharmacology ( L. L. Iversen, S. D. Iversen, and S. H. Snyder, eds.), Vol. 9, pp. 139–231, Plenum Press, New York.

    Google Scholar 

  • Lippe, W. R., Steward, O., and Rubel, E. W., 1980, The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2- deoxy-d-glucose autoradiography, Brain Res. 196: 43–58.

    PubMed  CAS  Google Scholar 

  • Lodge, D., and Curtis, D. R., 1978, Time course of GABA and glycine actions on cat spinal neurones: effect of pentobarbitone, Neurosci. Lett 8: 125–129.

    CAS  Google Scholar 

  • Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W., 1964, Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain, J. Biol. Chem 239: 18–30.

    PubMed  CAS  Google Scholar 

  • Lund, R. D., 1964, Terminal distribution in the superior colliculus of fibers originating in the visual cortex, Nature (London) 204: 1283–1285.

    CAS  Google Scholar 

  • Lund, R. D., 1965, Uncrossed visual pathways of hooded and albino rats, Science 149: 1506–1507.

    PubMed  CAS  Google Scholar 

  • Lund, J. P., Miller, J. J., and Courville, J., 1981, 3H-2-deoxy-D-glucose capture in the hippocampus and dentate gyrus of ketamine-anesthetized rat, Neurosci. Lett 24: 149–153.

    Google Scholar 

  • Maggi, A., and Enna, S. J., 1979, Characteristics of muscimol accumulation in mouse brain after systemic administration, Neuropharmacology 18: 361–366.

    PubMed  CAS  Google Scholar 

  • Maker, H. S., Clarke, D. D., and Lajtha, A. L., 1972, Intermediary metabolism of carbohydrates and amino acids, in: Basic Neurochemistry ( G. J. Siegel, R. W. Albers, R. Katzman, and B. W. Agranoff, eds.), pp. 279–307, Little, Brown and Company, Waltham, Massachusetts.

    Google Scholar 

  • Marco, E., Mao, C. C., Cheney, D. L., Revuelta, A., and Costa, E., 1976, The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei, Nature (London) 264: 363–365.

    CAS  Google Scholar 

  • Marco, E., Mao, C. C., Revuelta, A., Peralta, E., and Costa, E., 1978, Turnover rates of 7-aminobutyric acid in substantia nigra, n. caudatus, globus pallidus, and n. accumbens of rats injected with cataleptogenic and noncataleptogenic antipsychotics, Neuropharmacology 17: 589–596.

    PubMed  CAS  Google Scholar 

  • Mata, M., Fink, D. J., Gainer, H., Smith, C. B., Davidsen, L., Savaki, H., Schwartz, W. J., and Sokoloff, L., 1980, Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity, J. Neurochem 34: 213–215.

    PubMed  CAS  Google Scholar 

  • McCulloch, J., and Kelly, P. A. T., 1981, Alterations in local cerebral glucose utilization in specific thalamic nuclei following apomorphine, J. CBF Met 1: 133–136.

    CAS  Google Scholar 

  • McCulloch, J., Savaki, H. E., McCulloch, M. C., and Sokoloff, L., 1979, Specific distribution of metabolic alterations in cerebral cortex following apomorphine administration, Nature (London) 282: 303–305.

    CAS  Google Scholar 

  • McCulloch, J., Savaki, H. E., McCulloch, M. C., and Sokoloff, L., 1980a, Retina- dependent activation by apomorphine of metabolic activity in the superficial layer of the superior colliculus, Science 207: 313–315.

    PubMed  CAS  Google Scholar 

  • McCulloch, J., Savaki, H. E., and Sokoloff, L., 19806, Influence of dopaminergic systems on the lateral habenular nucleus of the rat, Brain Res. 194: 117–124.

    Google Scholar 

  • McCulloch, J., Kelly, P. A. T., and van Delft, A. M. L., 1982a, Neuroanatomical basis for the action of a behaviourally active ACTH4_g analogue, Eur. J. Pharmacol 78: 151–158.

    Google Scholar 

  • McCulloch, J., Kelly, P. A. T., Grome, J. J., and Pickard, J. D., 19826, Indomethacin and the coupling of local cerebral blood flow and local cerebral glucose utilization, Am. J. Physiol in press.

    Google Scholar 

  • McCulloch, J., Savaki, H. E., Jehle, J., and Sokoloff, L., 1982c, Local cerebral glucose utilization in hypothermic and hyperthermic rats, J. Neurochem 39: 255–258.

    PubMed  CAS  Google Scholar 

  • McCulloch, J., Savaki, H. E., McCulloch, M. C., Jehle, J., and Sokoloff, L., 1982d, The distribution of alterations in energy metabolism in the rat brain produced by apomorphine, Brain Res, 243: 67–80.

    PubMed  CAS  Google Scholar 

  • McCulloch, J., Savaki, H. E., and Sokoloff, L., 1982d, Distribution of effects of haloperidol on energy metabolism in the rat brain, Brain Res, 243: 81–90.

    PubMed  CAS  Google Scholar 

  • McGeer, P. L., and McGeer, E. G., 1975, Evidence for glutamic acid decarboxylase containing interneurons in the neostriatum, Brain Res. 91: 331–335.

    PubMed  CAS  Google Scholar 

  • Meibach, R. C., Glick, S. D., Cox, R., and Maayani, S., 1979, Localisation of phencyclidine- induced changes in brain energy metabolism, Nature (London) 282: 625–626.

    CAS  Google Scholar 

  • Meibach, R. C., Glick, S. D., Ross, D. A., Cox, R. D., and Maayani, S., 1980, Intraperitoneal administration and other modifications of the 2-deoxy-d-glucose technique, Brain Res. 195: 167–176.

    PubMed  CAS  Google Scholar 

  • Miller, A. L., Hawkins, R. A., and Veech, R. L., 1975, Decreased rate of glucose utilization by rat brain in vivo after exposure to atmospheres containing high concentrations of CO2J. Neurochem. 25: 553–558.

    CAS  Google Scholar 

  • Miller, R. J., Horn, A. S., and Iversen, L. L., 1974, The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3’,5’-monophosphate production in rat neostriatum and limbic forebrain, Mol. Pharmacol 10: 759–766.

    CAS  Google Scholar 

  • Miyamoto, M., and Nagawa, Y., 1977, Mesolimbic involvement in the locomotor stimulant action of thyrotropin-releasing hormone (TRH) in rats, Eur. J. Pharmacol 44: 143–152.

    PubMed  CAS  Google Scholar 

  • Miyaoka, M., Shinohara, M., Batipps, M., Pettigrew, K. D., Kennedy, C., and Sokoloff, L., 1979, The relationship between the intensity of the stimulus and the metabolic response in the visual system of the rat, Acta Neurol. Scand 60 (Suppl. 72): 16–17.

    Google Scholar 

  • Moore, R. Y., and Bloom, F. E., 1978, Central catecholamine neuron systems: anatomy and physiology of the dopamine systems, Annu. Rev. Neurosci 1: 129–169.

    PubMed  CAS  Google Scholar 

  • Moore, R. Y., and Bloom, F. E., 1979, Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems, Annu. Rev. Neurosci 2: 113–168.

    PubMed  CAS  Google Scholar 

  • Murrin, L. C., and Kuhar, M. J., 1979, Dopamine receptors in the rat frontal cortex: an autoradiographic study, Brain Res. 177: 279–285.

    PubMed  CAS  Google Scholar 

  • Nagai, Y., Narumi, S., Nagawa, Y., Sakurada, O., Ueno, H., and Ishii, S., 1980, Effect of thyrotropin-releasing hormone (TRH) on local cerebral glucose utilization, by the autoradiographic 2-deoxy[14C]-glucose method, in conscious and pentobarbitalized rats, J. Neurochem 35: 963–971.

    PubMed  CAS  Google Scholar 

  • Nahorski, S. R., and Rogers, K. J., 1973, In vivo effects of amphetamine on metabolites and metabolic rate in brain, J. Neurochem 21: 679–686.

    CAS  Google Scholar 

  • Nahorski, S. R., and Rogers, K. J., 1975, The role of catecholamines in the action of amphetamine and l-dopa on cerebral energy metabolism, Neuropharmacology 14: 283–290.

    PubMed  CAS  Google Scholar 

  • Nauta, W. J. H., and Domesick, V., 1979, The anatomy of the extrapyramidal system, in: Dopaminergic Ergot Derivatives and Motor Function ( K. Fuxe and D. Calne, eds.), pp. 3–22, Pergamon Press, New York.

    Google Scholar 

  • Nelson, S. R., Doull, J., Tockman, B. A., Cristiano, P. J., and Samson, F. E., 1978, Regional brain metabolism changes induced by acetylcholinesterase inhibitors, Brain Res. 157: 186–190.

    PubMed  CAS  Google Scholar 

  • Nelson, S. R., Howard, R. B., Gross, B. S., and Samson, F. E., 1980, Ketamine induced changes in regional glucose utilization in the rat brain, Anaesthesiol. 52: 330–334.

    CAS  Google Scholar 

  • Oldendorf, W. H., 1971, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol 221: 1629 - 1639.

    PubMed  CAS  Google Scholar 

  • Palacios, J. M., Kuhar, M. J., Rapoport, S. I., and London, E. D., 1981, Increases and decreases in local cerebral glucose utilization in response to GABA agonists, Europ. J. Pharmacol 71: 333–336.

    CAS  Google Scholar 

  • Palkovits, M., 1973, Isolated removal of hypothalamic or other brain nuclei, Brain Res. 59: 449–450.

    PubMed  CAS  Google Scholar 

  • Palkovits, M., and Zaborszky, L., 1977, Neuroanatomy of central cardiovascular control. Nucleus tractus solitarii: afferent and efferent neuronal connections in relation to the baroreceptor reflex arc, Prog. Brain Res 47: 9–34.

    PubMed  CAS  Google Scholar 

  • Parent, A., and Butcher, L. L., 1976, Organization and morphologies of acetylcholinesterase containing neurons in the thalamus and hypothalamus of the rat, J. Comp. Neurol 170: 205–226.

    PubMed  Google Scholar 

  • Pert, C. B., Kuhar, M. J., and Snyder, S. H., 1976, Opiate receptor: autoradiographic localization in rat brain, Proc. Natl. Acad. Sei. U.S.A 73: 3729–3733.

    CAS  Google Scholar 

  • Pert, A., Rosenblatt, J. E., Sivit, C., Pert, C. B., and Bunney, W. E., Jr., 1978, Long-term treatment with lithium prevents the development of dopamine receptor supersensitivity, Science 201: 171–173.

    PubMed  CAS  Google Scholar 

  • Phillipson, O. T., and Horn, A. S., 1976, Substantia nigra of the rat contains a dopamine- sensitive adenylate cyclase, Nature (London) 261: 418–420.

    CAS  Google Scholar 

  • Pickard, J. D., and MacKenzie, E. T., 1973, Inhibition of prostaglandin synthesis and the response of baboon cerebral circulation of carbon dioxide, Nature New Biol. 245: 187–188.

    PubMed  CAS  Google Scholar 

  • Powell, E. W., and Hines, G., 1975, Septohippocampal Interface, in: The Hippocampus ( R. L. Isaacson and K. H. Pribram, eds.), Vol. 1, pp. 41–59, Plenum Press, New York.

    Google Scholar 

  • Racagni, G., and Carenzi, A., 1976, The anterior amygdala dopamine-sensitive adenylate cyclase: point of action of antipsychotic drugs, Pharmacol. Res. Commun 8: 149–157.

    PubMed  CAS  Google Scholar 

  • Ray, D. E., 1980, An EEG investigation of decamethrin-induced choreoathetosis in the rat, Exp. Brain Res 38: 221–227.

    PubMed  CAS  Google Scholar 

  • Renaud, L. P., and Martin, J. B., 1975, Thyrotropin-releasing hormone (TRH): depressant action on central neuronal activity, Brain Res. 86: 150–154.

    PubMed  CAS  Google Scholar 

  • Roberts, P. J., Woodruff, G. N., and Iversen, L. L., 1978, Dopamine, Adv. Biochem. Psychopharmacol 19: 1–408.

    Google Scholar 

  • Rogers, K. J., and Hutchins, D. A., 1972, Studies on the relation of chemical structure of glycogenolytic activity in the brain, Eur. J. Pharmacol 20: 97–103.

    PubMed  CAS  Google Scholar 

  • Roth, R. H., and Nowycky, M. C., 1977, Dopaminergic neurons: effects elicited by γ- hydroxybutyrate are reversed by picrotoxin, Biochem. Pharmacol 26: 2079–2082.

    PubMed  CAS  Google Scholar 

  • Rotter, A., Birdsall, N.J. M., Burgen, A. S. V., Field, P. M., Hulme, E. C., and Raisman, G., 1979a, Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of [3H]-propylbenzilylcholine mustard and its distribution in the forebrain, Brain Res. Rev 1: 141–165.

    Google Scholar 

  • Rotter, A., Birdsall, N.J. M., Field, P. M., and Raisman, G., 19796, Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of [3H]-propylbenzilylcholine in the midbrain and hindbrain, Brain Res. Rev 1: 167–183.

    Google Scholar 

  • Rubin, E. H., and Ferrendelli, J. A., 1977, Distribution and regulation of cyclic nucleotide levels in cerebellum in vivo, J. Neurochem. 29: 43–51.

    CAS  Google Scholar 

  • M. N., 1974, Regulation of glucose and ketone-body metabolism in brain Ruderman, N. B., Ross, P. S., Berger, M., and Goodman,of anaesthetized rats, Biochem. J 138: 1–10.

    Google Scholar 

  • Ruffieux, A., and Schultz, W., 1980, Dopaminergic activation of reticulata neurones in the substantia nigra, Nature (London) 285: 240–241.

    CAS  Google Scholar 

  • Sagar, S. M., and Snodgrass, S. R., 1980, Effects of substantia nigra lesions on forebrain 2- deoxyglucose retention in the rat, Brain Res. 185: 335–348.

    PubMed  CAS  Google Scholar 

  • Sakurada, O., Shinohara, M., Klee, W. A., Kennedy, C., and Sokoloff, L., 1976, Local cerebral glucose utilization following acute or chronic morphine administration and withdrawal, Neurosci. Abstr 2: 613.

    Google Scholar 

  • Sakurada, O., Sokoloff, L., and Jacquet, Y. F., 1978, Local cerebral glucose utilization following injection of (β-endorphin into periaqueductal gray matter in the rat, Brain Res. 153: 403–407.

    PubMed  CAS  Google Scholar 

  • Sanberg, P. R., and Fibiger, H. C., 1979, Body weight, feeding and drinking behaviour in rats with kainic-induced lesions of striatal neurons—with a note on body weight symptomatology in Huntington’s Disease, Exp. Neurol 66: 444–466.

    PubMed  CAS  Google Scholar 

  • Savaki, H. E., Kadekaro, M., Jehle, J., and Sokoloff, L., 1978, a- and P-adrenoreceptor blockers have opposite effects on energy metabolism on the central auditory system, Nature (London) 276: 521–523.

    Google Scholar 

  • Savaki, H. E., Davidsen, L., Smith, C., and Sokoloff, L., 1980, Measurement of free glucose turnover in brain, J. Neurochem 35: 495–502.

    PubMed  CAS  Google Scholar 

  • Savaki, H. E., Kadekaro, M., McCulloch, J., and Sokoloff, L., 1982a, Central noradrenergic systems in the rat: a metabolic map** with three α-blocking agents, Brain Res. 234: 65–79.

    Google Scholar 

  • Savaki, H. E., MacPherson, H., and McCulloch, J., 1982b, Alterations in local cerebral glucose utilization during haemorrhagic hypotension, Circ. Res 50: 633–644.

    PubMed  CAS  Google Scholar 

  • Savaki, H. E., McCulloch, J., Kadekaro, M., and Sokoloff, L., 1982c, Influence of α- receptor blocking’agents upon metabolic activity in nuclei involved in central control of blood pressure, Brain Res. 233: 347–358.

    Google Scholar 

  • Scally, M. C., Ulus, I. H., Wurtman, R. J., and Pettibone, D. J., 1978, Regional distribution of neurotransmitter-synthesizing enzymes and substance P within the rat corpus striatum, Brain Res. 143: 556–560.

    PubMed  CAS  Google Scholar 

  • Scheich, H., Bonke, B. A., Bonke, D., and Langner, G., 1979, Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique, Cell Tiss. Res 204: 17–27.

    CAS  Google Scholar 

  • Schlemmer, R. F., Jr., Jackson, J. A., Preston, K. L., Bederka, J. P., Jr., Garver, D. L., and Davis, J. M., 1978, Phencyclidine-induced stereotyped behavior in monkeys: antagonism by pimozide, Eur. J. Pharmacol 52: 379–384.

    PubMed  CAS  Google Scholar 

  • Schuier, F., Orzi, F., Suda, S., Kennedy, C., and Sokoloff, L., 1981, The lumped constant for the 14C-deoxyglucose method in hyperglycervic rats, J. CBF Met. l(Suppl. 1 ): S63.

    Google Scholar 

  • Schwartz, W. J., 1978a, 6-Hydroxydopamine lesions of rat locus coeruleus alter brain glucose consumption, as measured by the 2-deoxy-d-[14C]-glucose tracer technique, Neurosci. Lett 7: 141–150.

    Google Scholar 

  • Schwartz, W. J., 1978b, A role for the dopaminergic nigrostriatal bundle in the pathogenesis of altered brain glucose consumption after lateral hypothalamic lesions. Evidence using the 14C-labeled deoxyglucose technique, Brain Res. 158: 129–147.

    PubMed  CAS  Google Scholar 

  • Schwartz, W. J., and Gainer, H., 1977, Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker, Science 197: 1089–1091.

    PubMed  CAS  Google Scholar 

  • Schwartz, W. J., Sharp, F. R., Gunn, R. H., and Evarts, E. V., 1976, Lesions of ascending dopaminergic pathways decrease forebrain glucose uptake, Nature (London) 261: 155–157.

    CAS  Google Scholar 

  • Schwartz, W. J., Smith, C. B., Davidsen, L., Savaki, H. E., Sokoloff, L., Mata, M., Fink, D. J., and Gainer, H., 1979, Metabolic map** of functional activity in the hypothalamo- neurohypophyseal system of the rat, Science 205: 723–725.

    PubMed  CAS  Google Scholar 

  • Schwartz, W. J., Davidsen, L. C., and Smith, C. B., 1980, In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus, J. Comp. Neurol 189: 157–167.

    CAS  Google Scholar 

  • Sejnowski, T. J., Reingold, S. C., Kelley, D. B., and Gelperin, A., 1980, Localization of [3H]-2-deoxyglucose in single molluscan neurones. Nature (London) 287: 449–451.

    CAS  Google Scholar 

  • Shapiro, H. M., Greenberg, J. H., Reivich, M., Shipko, E., van Horn, K., and Sokoloff, L., 1975, Local cerebral glucose utilization during anesthesia, in: Blood Flow and Metabolism in the Brain (M. Harper, B. Jennett, D. Miller, and J. Rowan, eds.), pp. 9. 42–43, Churchill, London.

    Google Scholar 

  • Shapiro, H. M., Greenberg, J. H., Reivich, M., Ashmead, G., and Sokoloff, L., 1978, Local cerebral glucose uptake in awake and halothane-anesthetized primates, Anesthesiology 48: 97–103.

    PubMed  CAS  Google Scholar 

  • Sharp, F. R., 1976a, Relative cerebral glucose uptake of neuronal perikarya and neuropil determined with 2-deoxyglucose in resting and swimming rat, Brain Res. 110: 127–139.

    Google Scholar 

  • Sharp, F. R., 19766, Rotation-induced increases of glucose uptake in rat vestibular nuclei and vestibulocerebellum, Brain Res. 110: 141–151.

    Google Scholar 

  • Sharp, F. R., Kaver, J. S., and Shepherd, G. M., 1975, Local sites of activity-related glucose metabolism in rat olfactory bulb during olfactory stimulation, Brain Res. 98: 596–600.

    PubMed  CAS  Google Scholar 

  • Siesjö, bo K., 1978, Brain Energy Metabolism, Wiley, New York.

    Google Scholar 

  • Siesjö, bo K., and Abdul-Rahman, A., 1979, A metabolic basis for the selective vulnerability of neurons in status epilepticus, Acta Physiol. Scand 106: 377–378.

    PubMed  Google Scholar 

  • Siggins, G. R., 1978, Electrophysiological role of dopamine in striatum: excitatory or inhibitory? in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. DiMascio, and K. F. Killam, eds.), pp. 143–157, Raven Press, New York.

    Google Scholar 

  • Simke, J. P., and Saelens, J. K., 1977, Evidence for a cholinergic fiber tract connecting the thalamus with the head of the striatum of the rat, Brain Res. 126: 487–495.

    PubMed  CAS  Google Scholar 

  • Simon, H., Scatton, B., and Le Moal, M., 1980, Dopaminergic A10 neurones are involved in cognitive functions, Nature (London) 286: 150–151.

    CAS  Google Scholar 

  • Skeen, L. C., 1977, Odour-induced patterns of deoxyglucose consumption in the olfactory bulb of the tree shrew, Tupaia Glis, Brain Res. 124: 147–153.

    CAS  Google Scholar 

  • Skirboll, L. R., Grace, A. A., and Bunney, B. S., 1979, Dopamine auto- and postsynaptic receptors: electrophysiological evidence for differential sensitivity to dopamine agonists, Science 206: 80–82.

    PubMed  CAS  Google Scholar 

  • Smith, R. C., Meltzer, H. Y., Arora, R. C., and Davis, J. M., 1977, Effects of phencyclidine on [3H]-catecholamine and [3H]-serotonin uptake in synaptosomal preparations from rat brain, Biochem. Pharmacol 26: 1435–1439.

    PubMed  CAS  Google Scholar 

  • Snodgrass, S. R., 1978, Use of 3H-muscimol for GABA receptor studies, Nature (London) 273: 392–394.

    CAS  Google Scholar 

  • Sokoloff, L., 1973, Metabolism of ketone bodies by the brain, Annu. Rev. Med 23: 271–280.

    Google Scholar 

  • Sokoloff, L., 1977, Relation between physiological function and energy metabolism in the central nervous system, J. Neurochem 29: 13–26.

    PubMed  CAS  Google Scholar 

  • Sokoloff, L., 1978, Map** cerebral functional activity with radioactive deoxyglucose, Trends in Neurosci. 1:75–79.

    CAS  Google Scholar 

  • Sokoloff, L., 1979 The [14C]-deoxyglucose method: four years later, Acta Neurol. Scand. 60:(Suppl. 72):640–649.

    Google Scholar 

  • Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. CBF Met 1:7–36.

    Google Scholar 

  • Sokoloff, L., Reivich, M., Kennedy, C., Des Rosiers, M. H., Patlak, C. S., Pettigrew, K. D., Sakurada, O., and Shinohara, M., 1977, The [14C]-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochem 28:897–916.

    Google Scholar 

  • Sols, A., and Crane, R. K., 1954, Substrate specificity of brain hexokinase, J. Biol. Chem 210: 581–595.

    Google Scholar 

  • Spano, P. F., DiChiara, G., Tonon, G. C., and Trabucchi, M., 1976, A dopamine-stimulated adenylate cyclase in rat substantia nigra, J. Neurochem 27: 1565–1568.

    PubMed  CAS  Google Scholar 

  • Speth, R. C., Chen, F. M., Lindstrom, J. M., Kobayashi, R. M., and Yamamura, H. I., 1977, Nicotinic cholinergic receptors in the rat brain identified by l25I-Naja naja siamensis α- toxin binding, Brain Res. 131: 350–355.

    PubMed  CAS  Google Scholar 

  • Starke, K., 1977, Regulation of noradrenaline release by presynaptic receptor systems, Rev. Physiol. Biochem. Pharmacol 77:1–24.

    Google Scholar 

  • Steward, O., and Smith, L. K., 1980, Metabolic changes accompanying denervation and reinnervation of the dentate gyrus of the rat measured by [3H]-2-deoxyglucose autoradiography, Exp. Neurol 69:513–527.

    Google Scholar 

  • Stock, G., Magnausson, T., and Anden, N. E., 1973, Increase in brain dopamine after axotomy or treatment with 7-hydroxybutyric acid due to elimination of nerve impulse flow, Naunyn-Schmiedeberg’s Arch. Pharmacol 279: 89–92.

    PubMed  Google Scholar 

  • Swanson, L. W., and Cowan, W. M., 1977, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol 172: 49–84.

    PubMed  CAS  Google Scholar 

  • Tarsy, D., and Baldessarini, R. J., 1974, Behavioural supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines, Neuropharmacology 13: 927–940.

    PubMed  CAS  Google Scholar 

  • Tassin, J. P., Bockaert, J., Blanc, G., Stinus, L., Thierry, A. M., Lavielle, S., Premont, J., and Glowinski, J., 1978, Topographical distribution of dopaminergic innervation and dopaminergic receptors of the anterior cerebral cortex of the rat, Brain Res. 154: 241–251.

    PubMed  CAS  Google Scholar 

  • Taube, H. D., Montel, H., Hau, G., and Starke, K., 1975, Phencyclidine and ketamine: comparison with the effect of cocaine on the noradrenergic neurones of the rat brain cortex, Naunyn-Schmiedeberg’s Arch. Pharmacol 291: 47–54.

    PubMed  CAS  Google Scholar 

  • Teitelbaum, P., and Epstein, A. N., 1962, The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions, Physiol. Rev 69: 74–90.

    CAS  Google Scholar 

  • Ungerstedt, U., 1971, Adipsia and aphagia after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. Suppl 367: 95–122.

    PubMed  CAS  Google Scholar 

  • U’Prichard, D. C., Greenberg, D. A., and Snyder, S. H., 1977, Binding characteristics of a radiolabeled agonist and antagonist at central nervous system alpha noradrenergic receptors, Mol. Pharmacol 13: 454–473.

    PubMed  Google Scholar 

  • van der Heyden, J. A. M., Venema, K., and Korf, J., 1980, In vivo release of endogenous GABA from rat striatum: Inhibition by dopamine, J. Neurochem 34: 1338–1341.

    Google Scholar 

  • Veening, J. G., Cornelissen, F. M., and Lieven, P. A.J. M., 1980, The topical organization of the afferents to the caudato-putamen of the rat. A horseradish peroxidase study, Neuroscience 5: 1253–1268.

    PubMed  CAS  Google Scholar 

  • Vincent, J. P., Kartalovski, B., Geneste, P., Kamenka, J. M., and Lazdunski, M., 1979, Interaction of phencyclidine (“angel dust”) with a specific receptor in rat brain membranes, Proc. Natl Acad. Sci. U.S.A 76: 4678–4682.

    PubMed  CAS  Google Scholar 

  • Wamsley, J. K., Zarbin, M. A., Birdsall, N. J. M., and Kuhar, M. J., 1980, Muscarinic cholinergic receptors: autoradiographic localization of high- and low-affinity agonist binding sites, Brain Res. 200: 1–12.

    PubMed  CAS  Google Scholar 

  • Wang, R. Y., and Aghajanian, G. K., 1977, Physiological evidence for habenula as major link between forebrain and midbrain raphe, Science 197: 89–91.

    PubMed  CAS  Google Scholar 

  • Watling, K. J., Dowling, J. E., and Iversen, L. L., 1979, Dopamine receptors in the retina may all be linked to adenylate cyclase, Nature (London) 281: 578–580.

    CAS  Google Scholar 

  • Webster, W. R., Serviere, J., Batini, C., and Laplante, S., 1978, Autoradiographic demonstration with 2-14C-deoxyglucose of frequency selectivity in the auditory system of cats under conditions of functional activity, Neurosci. Lett 10: 43–48.

    PubMed  CAS  Google Scholar 

  • Wechsler, L. R., Savaki, H. E., and Sokoloff, L., 1979, Effects of d- and l-amphetamine on local cerebral glucose utilization in the conscious rat, J. Neurochem 32: 15–22.

    PubMed  CAS  Google Scholar 

  • Weinberger, J., Greenberg, J. H., Waldman, M. T. G., Sylvestro, A., and Reivich, M., 1979, The effect of scopolamine on local glucose metabolism in rat brain, Brain Res. 177: 337–345.

    PubMed  CAS  Google Scholar 

  • Weiss, B. L., and Aghajanian, G. K., 1971, Activation of brain serotonin metabolism by heat: role of midbrain raphe neurons, Brain Res. 26: 37–48.

    CAS  Google Scholar 

  • Wenk, H., Bigl, V., and Meyer, U., 1980, Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats, Brain Res. Rev 2: 295–316.

    CAS  Google Scholar 

  • Westerink, B. H. C., and Korf, J., 1975, Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain, Eur. J. Pharmacol 33: 31–40.

    PubMed  CAS  Google Scholar 

  • Wick, A. N., Drury, D. R., Nakada, H. I., and Wolfe, J. B., 1957, Localization of the primary metabolic block produced by 2-deoxyglucose, J. Biol. Chem 224: 963–969.

    PubMed  CAS  Google Scholar 

  • Winokur, A., and Utiger, R. D., 1974, Thyrotropin-releasing hormone: regional distribution in rat brain, Science 185: 265–267.

    PubMed  CAS  Google Scholar 

  • Wolfe, L. S., and Coceani, F., 1979, The role of prostaglandins in the central nervous system, Annu. Rev. Physiol 41: 669–84.

    PubMed  CAS  Google Scholar 

  • Wolfson, L. I., Sakurada, O., and Sokoloff, L., 1977, Effects of butyrolactone on local cerebral glucose utilization in the rat, J. Neurochem 29: 777–783.

    PubMed  CAS  Google Scholar 

  • Wooten, G. F., and Collins, R. C., 1980, Regional brain glucose utilization following intrastriatal injections of kainic acid, Brain Res. 201: 173–184.

    PubMed  CAS  Google Scholar 

  • Wuerthule, S. M., Lowell, K. K., Jones, M. Z., and Moore, K. E., 1978, A histological study of kainic acid induced lesions of the rat brain, Brain Res. 149: 489–497.

    Google Scholar 

  • Yarbrough, G. G., 1975, Supersensitivity of caudate neurones after repeated administration of haloperidol, Eur. J. Pharmacol 31: 367–369.

    PubMed  CAS  Google Scholar 

  • Young, W. S., Ill, and Kuhar, M. J., 1979, Noradrenergic ai and a2 receptors: autoradiographic visualization, Eur. J. Pharmacol 59: 317–319.

    CAS  Google Scholar 

  • Young, W. S., III, and Kuhar, M. J., 1980, Radiohistochemical localization of benzodiazepine receptors in rat brain, J. Pharmacol Exp. Ther 212: 337–346.

    PubMed  CAS  Google Scholar 

  • Zaczek, R., Simonton, S., and Coyle, J. T., 1980, Local and distant neuronal degeneration following intrastriatal injection of kainic acid, J. Neuropathol. Exp. Neurol 39: 245–264.

    PubMed  CAS  Google Scholar 

  • Zatz, M., and Roth, R. H., 1975, Inhibition of cortical prostaglandin synthesis following indomethacin, Biochem. Pharmacol 24: 2101–2103.

    PubMed  CAS  Google Scholar 

  • Zivkovic, B., Guidotti, A., Revuelta, A., and Costa, E., 1975, Effect of thioridazine, clozapine, and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens, J. Pharmacol Exp. Ther 194: 37–46.

    PubMed  CAS  Google Scholar 

  • Zukin, S. R., and Zukin, R. S., 1979, Specific [3H]-phencyclidine binding in rat central nervous system, Proc. Natl Acad. Sci. U.S.A 76: 5372–5376.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

McCulloch, J. (1982). Map** Functional Alterations in the CNS With [14C]Deoxyglucose. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3452-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3452-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3454-5

  • Online ISBN: 978-1-4613-3452-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation