Cerebral Glucose Metabolism

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

Glucose is the main substrate for energy metabolism of the brain, and the regional cerebral metabolic rate is directly related to regional brain activity. Therefore, the measurement of regional glucose metabolism is of great importance for the assessment of regional normal function and of pathological changes. Quantitation of glucose metabolism by PET is based on the 2-deoxyglucose method developed by Sokoloff and colleagues: F18-labelled deoxyglucose (FDG) is transported into the brain and phosphorylated, but cannot be further metabolised and therefore is accumulated intracellularly. The concentration of the tracer can be measured three dimensionally by PET, and together with the arterial tracer concentration, the kinetics of glucose uptake can be assessed, and the regional cerebral metabolic rates for glucose (rCMRGlc) can be calculated.

rCMRGlc is high in cortex and grey matter structures and low in white matter, but there are significant differences among various regions. Metabolic rate is slightly reduced with ageing and changed by sleep, dream, and functional activation. CMRGlc is significantly affected in pathological states, and the regional and global changes are important for assessing the severity of disorders and for differential diagnosis of diseases of the brain. Therefore, FDG-PET has still great importance in brain research and many applications in clinical neurology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21(10):1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Berti V, Mosconi L, Pupi A (2014) Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin 9(2):129–140

    Article  PubMed  Google Scholar 

  • Blomqvist G, Seitz RJ, Sjogren I, Halldin C, Stone-Elander S, Widen L et al (1994) Regional cerebral oxidative and total glucose consumption during rest and activation studied with positron emission tomography. Acta Physiol Scand 151(1):29–43

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist G, Stone-Elander S, Halldin C, Roland PE, Widen L, Lindqvist M et al (1990) Positron emission tomographic measurements of cerebral glucose utilization using [1-11C]D-glucose. J Cereb Blood Flow Metab 10(4):467–483

    Article  CAS  PubMed  Google Scholar 

  • Bohnen NI, Djang DS, Herholz K, Anzai Y, Minoshima S (2012) Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med 53(1):59–71

    Article  CAS  PubMed  Google Scholar 

  • Bonte S, Vandemaele P, Verleden S, Audenaert K, Deblaere K, Goethals I et al (2017) Healthy brain ageing assessed with 18F-FDG PET and age-dependent recovery factors after partial volume effect correction. Eur J Nucl Med Mol Imaging 44(5):838–849

    Article  PubMed  Google Scholar 

  • Broski SM, Goenka AH, Kemp BJ, Johnson GB (2018) Clinical PET/MRI: 2018 update. Am J Roentgenol 211(2):295–313

    Article  Google Scholar 

  • Bunevicius A, Yuan H, Lin W (2013) The potential roles of 18F-FDG-PET in management of acute stroke patients. Biomed Res Int 2013:634598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Catana C, Drzezga A, Heiss WD, Rosen BR (2012) PET/MRI for neurologic applications. J Nucl Med 53(12):1916–1925

    Article  PubMed  Google Scholar 

  • Cavaliere C, Longarzo M, Fogel S, Engstrom M, Soddu A (2020) Neuroimaging of narcolepsy and primary hypersomnias. Neuroscientist:1073858420905829

    Google Scholar 

  • Chetelat G, Landeau B, Salmon E, Yakushev I, Bahri MA, Mezenge F et al (2013) Relationships between brain metabolism decrease in normal aging and changes in structural and functional connectivity. NeuroImage 76:167–177

    Article  PubMed  Google Scholar 

  • Chiaravalloti A, Micarelli A, Ricci M, Pagani M, Ciccariello G, Bruno E et al (2019) Evaluation of task-related brain activity: is there a role for (18)F FDG-PET imaging? Biomed Res Int 2019:4762404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chierichetti F, Pizzolato G (2012) 18F-FDG-PET/CT. Q J Nucl Med Mol Imaging 56(2):138–150

    CAS  PubMed  Google Scholar 

  • Choo IH, Ni R, Scholl M, Wall A, Almkvist O, Nordberg A (2013) Combination of 18F-FDG PET and cerebrospinal fluid biomarkers as a better predictor of the progression to Alzheimer’s disease in mild cognitive impairment patients. J Alzheimers Dis 33(4):929–939

    Article  CAS  PubMed  Google Scholar 

  • Chugani HT, Phelps ME, Mazziotta JC (1987) Positron emission tomography study of human brain functional development. Ann Neurol 22(4):487–497

    Article  CAS  PubMed  Google Scholar 

  • Clarke D, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ (ed) Basic neurochemistry: molecular, cellular, and medical aspects, 6th edn. Lippincott Williams & Wilkins, Philadelphia, p xxi, 1183 p

    Google Scholar 

  • Drzezga A (2009) Diagnosis of Alzheimer’s disease with [18F]PET in mild and asymptomatic stages. Behav Neurol 21(1):101–115

    Article  PubMed  PubMed Central  Google Scholar 

  • Drzezga A, Altomare D, Festari C, Arbizu J, Orini S, Herholz K et al (2018) Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer’s disease. Eur J Nucl Med Mol Imaging 45(9):1487–1496

    Article  PubMed  Google Scholar 

  • Duara R, Grady C, Haxby J, Ingvar D, Sokoloff L, Margolin RA et al (1984) Human brain glucose utilization and cognitive function in relation to age. Ann Neurol 16(6):703–713

    Article  CAS  PubMed  Google Scholar 

  • Fox PT, Raichle ME, Mintun MA, Dence C (1988) Nonoxidative glucose consumption during focal physiologic neural activity. Science 241(4864):462–464

    Article  CAS  PubMed  Google Scholar 

  • Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A et al (2017) Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging 52:183–195

    Article  CAS  PubMed  Google Scholar 

  • Hahn A, Gryglewski G, Nics L, Hienert M, Rischka L, Vraka C et al (2016) Quantification of task-specific glucose metabolism with constant infusion of 18F-FDG. J Nucl Med 57(12):1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, Phelps ME, Huang SC, Kuhl DE (1981) Effect of ischemia on quantification of local cerebral glucose metabolic rate in man. J Cereb Blood Flow Metab 1(1):37–51

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD (2009a) WSO Leadership in Stroke Medicine Award Lecture Vienna, September 26, 2008: functional imaging correlates to disturbance and recovery of language function. Int J Stroke 4(2):129–136

    Article  PubMed  Google Scholar 

  • Heiss WD (2009b) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl 1):S105–S112

    Article  PubMed  Google Scholar 

  • Heiss WD (2018) The additional value of PET in the assessment of cerebral small vessel disease. J Nucl Med 59(11):1660–1664

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Habedank B, Klein JC, Herholz K, Wienhard K, Lenox M et al (2004) Metabolic rates in small brain nuclei determined by high-resolution PET. J Nucl Med 45(11):1811–1815

    PubMed  Google Scholar 

  • Heiss WD, Huber M, Fink GR, Herholz K, Pietrzyk U, Wagner R et al (1992) Progressive derangement of periinfarct viable tissue in ischemic stroke. J Cereb Blood Flow Metab 12(2):193–203

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Goldner H, Wienhard K (1984) Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose. J Cereb Blood Flow Metab 4(2):212–223

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Pawlik G, Herholz K, Wagner R, Wienhard K (1985) Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Brain Res 327(1–2):362–366

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Raab P, Lanfermann H (2011) Multimodality assessment of brain tumors and tumor recurrence. J Nucl Med 52(10):1585–1600

    Article  CAS  PubMed  Google Scholar 

  • Heiss WD, Zimmermann-Meinzingen S (2012) PET imaging in the differential diagnosis of vascular dementia. J Neurol Sci 322(1–2):268–273

    Article  PubMed  Google Scholar 

  • Herholz K (2017) Brain tumors: an update on clinical PET research in gliomas. Semin Nucl Med 47(1):5–17

    Article  PubMed  Google Scholar 

  • Herholz K, Herscovitch P, Heiss WD (2013) NeuroPET positron emission tomography in neuroscience and clinical neurology. Springer, Berlin

    Google Scholar 

  • Herholz K, Langen KJ, Schiepers C, Mountz JM (2012) Brain tumors. Semin Nucl Med 42(6):356–370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh TC, Lin WY, Ding HJ, Sun SS, Wu YC, Yen KY et al (2012) Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. J Neuroimaging 22(1):21–27

    Article  PubMed  Google Scholar 

  • Jiang J, Sun Y, Zhou H, Li S, Huang Z, Wu P et al (2018) Study of the influence of age in (18)F-FDG PET images using a data-driven approach and its evaluation in Alzheimer’s disease. Contrast Media Mol Imaging 2018:3786083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jones T, Rabiner EA, Company PETRA (2012) The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab 32(7):1426–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juaristi I, Contreras L, Gonzalez-Sanchez P, Perez-Liebana I, Gonzalez-Moreno L, Pardo B et al (2019) The response to stimulation in neurons and astrocytes. Neurochem Res 44(10):2385–2391

    Article  CAS  PubMed  Google Scholar 

  • Kalpouzos G, Chetelat G, Baron JC, Landeau B, Mevel K, Godeau C et al (2009) Voxel-based map** of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiol Aging 30(1):112–124

    Article  CAS  PubMed  Google Scholar 

  • Kelly PJ, Camps-Renom P, Giannotti N, Marti-Fabregas J, Murphy S, McNulty J et al (2019) Carotid plaque inflammation imaged by (18)F-Fluorodeoxyglucose positron emission tomography and risk of early recurrent stroke. Stroke 50(7):1766–1773

    Article  CAS  PubMed  Google Scholar 

  • Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27(4):476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhl DE, Metter EJ, Riege WH, Phelps ME (1982) Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J Cereb Blood Flow Metab 2(2):163–171

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara H, Evans AC, Gjedde A (1990) Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab 10(2):180–189

    Article  CAS  PubMed  Google Scholar 

  • Lotan E, Friedman KP, Davidson T, Shepherd TM (2020) Brain 18F-FDG-PET: utility in the diagnosis of dementia and epilepsy. Isr Med Assoc J 22(3):178–184

    PubMed  Google Scholar 

  • Madsen PL, Hasselbalch SG, Hagemann LP, Olsen KS, Bulow J, Holm S et al (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15(3):485–491

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901

    Article  CAS  PubMed  Google Scholar 

  • Mangold R, Sokoloff L, Conner E, Kleinerman J, Therman PO, Kety SS (1955) The effects of sleep and lack of sleep on the cerebral circulation and metabolism of normal young men. J Clin Invest 34(7, Part 1):1092–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marnane M, Merwick A, Sheehan OC, Hannon N, Foran P, Grant T et al (2012) Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol 71(5):709–718

    Article  PubMed  Google Scholar 

  • Meles SK, Renken RJ, Pagani M, Teune LK, Arnaldi D, Morbelli S et al (2020) Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three European cohorts. Eur J Nucl Med Mol Imaging 47(2):437–450

    Article  CAS  PubMed  Google Scholar 

  • Meyer PT, Frings L, Rucker G, Hellwig S (2017) (18)F-FDG PET in Parkinsonism: differential diagnosis and evaluation of cognitive impairment. J Nucl Med 58(12):1888–1898

    Article  CAS  PubMed  Google Scholar 

  • Mintun MA, Lundstrom BN, Snyder AZ, Vlassenko AG, Shulman GL, Raichle ME (2001) Blood flow and oxygen delivery to human brain during functional activity: theoretical modeling and experimental data. Proc Natl Acad Sci U S A 98(12):6859–6864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasu S, Hata T, Nakajima T, Suzuki Y (2002) Evaluation of 18F-FDG PET in acute ischemic stroke: assessment of hyper accumulation around the lesion. Kaku Igaku 39(2):103–110

    PubMed  Google Scholar 

  • Nofzinger EA, Mintun MA, Wiseman M, Kupfer DJ, Moore RY (1997) Forebrain activation in REM sleep: an FDG PET study. Brain Res 770(1-2):192–201

    Article  CAS  PubMed  Google Scholar 

  • Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28(1):5–12

    Article  CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Pawlik G, Heiss WD (1989) Positron emission tomography and neuropsychological function. In: Bigler ED, Yeo RA, Turkheimer E (eds) Neuropsychological function and brain imaging. Springer, New York, NY, pp 65–138

    Chapter  Google Scholar 

  • Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 6(5):371–388

    Article  CAS  PubMed  Google Scholar 

  • Phelps ME, Mazziotta JC, Kuhl DE, Nuwer M, Packwood J, Metter J et al (1981) Tomographic map** of human cerebral metabolism visual stimulation and deprivation. Neurology 31(5):517–529

    Article  CAS  PubMed  Google Scholar 

  • Portnow LH, Vaillancourt DE, Okun MS (2013) The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology 80(10):952–956

    Article  PubMed  PubMed Central  Google Scholar 

  • Raichle ME, Larson KB, Phelps ME, Grubb RL Jr, Welch MJ, Ter-Pogossian MM (1975) In vivo measurement of brain glucose transport and metabolism employing glucose--11C. Am J Phys 228(6):1936–1948

    Article  CAS  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annu Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C et al (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5(2):179–192

    Article  CAS  PubMed  Google Scholar 

  • Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T et al (1979) The [18F]fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Liu H, Hu Z, Hu H, Shi P (2012) The relationship between cerebral glucose metabolism and age: report of a large brain PET data set. PLoS One 7(12):e51517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd TM, Nayak GK (2019) Clinical use of integrated positron emission tomography-magnetic resonance imaging for dementia patients. Top Magn Reson Imaging 28(6):299–310

    Article  PubMed  Google Scholar 

  • Shiyam Sundar LK, Muzik O, Rischka L, Hahn A, Lanzenberger R, Hienert M et al (2020) Promise of fully integrated PET/MRI: noninvasive clinical quantification of cerebral glucose metabolism. J Nucl Med 61(2):276–284

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Siesjo BK (1978) Brain energy metabolism and catecholaminergic activity in hypoxia, hypercapnia and ischemia. J Neural Transm Suppl 14:17–22

    Google Scholar 

  • Silverman DHS, Melega WP (2004) Molecular imaging of biologic processes with PET: evaluation biologic bases of cerebral function. In: MEPD P (ed) Pet: molecular imaging and its biological applications. Springer, pp 509–583

    Google Scholar 

  • Sokoloff L (1989) Circulation and energy metabolism of the brain. In: Siegel GJ (ed) Basic neurochemistry: molecular, cellular, and medical aspects, 4th edn. Raven Press, New York, p xviii. 984 p

    Google Scholar 

  • Sokoloff L (1999) Energetics of functional activation in neural tissues. Neurochem Res 24(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28(5):897–916

    Article  CAS  PubMed  Google Scholar 

  • Tondo G, Esposito M, Dervenoulas G, Wilson H, Politis M, Pagano G (2019) Hybrid PET-MRI applications in movement disorders. Int Rev Neurobiol 144:211–257

    Article  PubMed  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107(41):17757–17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villien M, Wey HY, Mandeville JB, Catana C, Polimeni JR, Sander CY et al (2014) Dynamic functional imaging of brain glucose utilization using fPET-FDG. NeuroImage 100:192–199

    Article  PubMed  Google Scholar 

  • von Oertzen TJ (2018) PET and ictal SPECT can be helpful for localizing epileptic foci. Curr Opin Neurol 31(2):184–191

    Article  Google Scholar 

  • Wienhard K, Pawlik G, Herholz K, Wagner R, Heiss WD (1985) Estimation of local cerebral glucose utilization by positron emission tomography of [18F]2-fluoro-2-deoxy-D-glucose: a critical appraisal of optimization procedures. J Cereb Blood Flow Metab 5(1):115–125

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Bergsneider M, Glenn TC, Yeh E, Hovda DA, Phelps ME et al (2003) Measurement of the global lumped constant for 2-deoxy-2-[18F]fluoro-D-glucose in normal human brain using [15O]water and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography imaging. A method with validation based on multiple methodologies. Mol Imaging Biol 5(1):32–41

    Article  PubMed  Google Scholar 

  • Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosures

Wolf-Dieter Heiss and Olivier Zaro-Weber were funded by the WDH Foundation and the Marga and Walter Boll Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf-Dieter Heiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heiss, WD., Zaro-Weber, O. (2021). Cerebral Glucose Metabolism. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation