Hydrophilic Interaction Liquid Chromatography (HILIC) Enrichment of Glycopeptides Using PolyHYDROXYETHYL A

  • Protocol
  • First Online:
Recombinant Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2762))

  • 470 Accesses

Abstract

Glycosylation of proteins is an important post-translational modification that plays a role in a wide range of biological processes, including immune response, intercellular signaling, inflammation, and host-pathogen interaction. Abnormal protein glycosylation has been correlated with various diseases. However, the study of protein glycosylation remains challenging due to its low abundance, microheterogeneity of glycosylation sites, and low ionization efficiency. During the past decade, several methods for enrichment and for isolation of glycopeptides from biological samples have been developed and successfully employed in glycoproteomics research. In this chapter, we discuss the sample preparation protocol and the strategies for effectively isolating and enriching glycopeptides from biological samples, using PolyHYDROXYETHYL A as a hydrophilic interaction liquid chromatography (HILIC) enrichment technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hart GW, Copeland RJ (2010) Glycomics hits the big time. Cell 143(5):672–676. https://doi.org/10.1016/j.cell.2010.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tzeng SF, Tsai CH, Chao TK et al (2018) O-Glycosylation-mediated signaling circuit drives metastatic castration-resistant prostate cancer. FASEB J:fj201800687. https://doi.org/10.1096/fj.201800687

  3. de Vreede G, Morrison HA, Houser AM et al (2018) A drosophila tumor suppressor gene prevents tonic TNF signaling through receptor N-glycosylation. Dev Cell 45(5):595–605.e594. https://doi.org/10.1016/j.devcel.2018.05.012

  4. Singh C, Shyanti RK, Singh V et al (2018) Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression. Biochem Biophys Res Commun 499(2):374–380. https://doi.org/10.1016/j.bbrc.2018.03.169

    Article  CAS  PubMed  Google Scholar 

  5. Oyama M, Kariya Y, Kariya Y et al (2018) Biological role of site-specific O-glycosylation in cell adhesion activity and phosphorylation of osteopontin. Biochem J 475(9):1583–1595. https://doi.org/10.1042/bcj20170205

    Article  CAS  PubMed  Google Scholar 

  6. Solá RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245. https://doi.org/10.1002/jps.21504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desko MM, Gross DA, Kohler JJ (2009) Effects of N-glycosylation on the activity and localization of GlcNAc-6-sulfotransferase 1. Glycobiology 19(10):1068–1077. https://doi.org/10.1093/glycob/cwp092

    Article  CAS  PubMed  Google Scholar 

  8. Sperandio M, Gleissner CA, Ley K (2009) Glycosylation in immune cell trafficking. Immunol Rev 230(1):97–113. https://doi.org/10.1111/j.1600-065X.2009.00795.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473(1):4–8. https://doi.org/10.1016/s0304-4165(99)00165-8

    Article  CAS  PubMed  Google Scholar 

  10. Shental-Bechor D, Levy Y (2008) Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc Natl Acad Sci U S A 105(24):8256–8261. https://doi.org/10.1073/pnas.0801340105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kizuka Y, Kitazume S, Taniguchi N (2017) N-glycan and alzheimer’s disease. Biochim Biophys Acta Gen Subj 1861(10):2447–2454. https://doi.org/10.1016/j.bbagen.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  12. Van Scherpenzeel M, Willems E, Lefeber DJ (2016) Clinical diagnostics and therapy monitoring in the congenital disorders of glycosylation. Glycoconj J 33(3):345–358. https://doi.org/10.1007/s10719-015-9639-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Magalhães A, Duarte HO, Reis CA (2021) The role of O-glycosylation in human disease. Mol Asp Med 79:100964. https://doi.org/10.1016/j.mam.2021.100964

    Article  CAS  Google Scholar 

  14. Mondello S, Sandner V, Goli M et al (2022) Exploring serum glycome patterns after moderate to severe traumatic brain injury: a prospective pilot study. eClinicalMedicine 50:101494. https://doi.org/10.1016/j.eclinm.2022.101494

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mehta A, Herrera H, Block T (2015) Glycosylation and liver cancer. Adv Cancer Res 126:257–279. https://doi.org/10.1016/bs.acr.2014.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peng W, Goli M, Mirzaei P et al (2019) Revealing the biological attributes of N-glycan isomers in breast cancer brain metastasis using porous graphitic carbon (PGC) liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Proteome Res 18(10):3731–3740. https://doi.org/10.1021/acs.jproteome.9b00429

    Article  CAS  PubMed  Google Scholar 

  17. Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152. https://doi.org/10.1016/j.semcancer.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  18. Yu A, Zhao J, Peng W et al (2018) Advances in mass spectrometry-based glycoproteomics. Electrophoresis 39(24):3104–3122. https://doi.org/10.1002/elps.201800272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peng W, Gutierrez Reyes CD, Gautam S et al (2023) MS-based glycomics and glycoproteomics methods enabling isomeric characterization. Mass Spectrom Rev 42(2):577–616. https://doi.org/10.1002/mas.21713

    Article  CAS  PubMed  Google Scholar 

  20. Goli M, Yu A, Cho BG et al (2021) Chapter 8 – LC-MS/MS in glycomics and glycoproteomics analyses. In: El Rassi Z (ed) Carbohydrate analysis by modern liquid phase separation techniques, 2nd edn. Elsevier, Amsterdam, pp 391–441. https://doi.org/10.1016/B978-0-12-821447-3.00005-6

    Chapter  Google Scholar 

  21. Banazadeh A, Veillon L, Wooding KM et al (2017) Recent advances in mass spectrometric analysis of glycoproteins. Electrophoresis 38(1):162–189. https://doi.org/10.1002/elps.201600357

    Article  CAS  PubMed  Google Scholar 

  22. Gutierrez-Reyes CD, Jiang P, Atashi M et al (2022) Advances in mass spectrometry-based glycoproteomics: an update covering the period 2017-2021. Electrophoresis 43(1–2):370–387. https://doi.org/10.1002/elps.202100188

    Article  CAS  PubMed  Google Scholar 

  23. Cummings RD, Pierce JM (2014) The challenge and promise of glycomics. Chem Biol 21(1):1–15. https://doi.org/10.1016/j.chembiol.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. **ao H, Sun F, Suttapitugsakul S et al (2019) Global and site-specific analysis of protein glycosylation in complex biological systems with mass spectrometry. Mass Spectrom Rev 38(4–5):356–379. https://doi.org/10.1002/mas.21586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gutierrez Reyes CD, Jiang P, Donohoo K et al (2021) Glycomics and glycoproteomics: approaches to address isomeric separation of glycans and glycopeptides. J Sep Sci 44(1):403–425. https://doi.org/10.1002/jssc.202000878

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Qin H, Ye M (2021) [Recent advances in glycopeptide enrichment and mass spectrometry data interpretation approaches for glycoproteomics analyses]. Se Pu 39(10):1045–1054. https://doi.org/10.3724/sp.J.1123.2021.06011

  27. Sun N, Wu H, Chen H et al (2019) Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun (Camb) 55(70):10359–10375. https://doi.org/10.1039/c9cc04124a

    Article  CAS  PubMed  Google Scholar 

  28. Zhang H, Yi EC, Li XJ et al (2005) High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4(2):144–155. https://doi.org/10.1074/mcp.M400090-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yehia Mechref .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Goli, M., Jiang, P., Fowowe, M., Hakim, M.A., Mechref, Y. (2024). Hydrophilic Interaction Liquid Chromatography (HILIC) Enrichment of Glycopeptides Using PolyHYDROXYETHYL A. In: Bradfute, S.B. (eds) Recombinant Glycoproteins. Methods in Molecular Biology, vol 2762. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3666-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3666-4_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3665-7

  • Online ISBN: 978-1-0716-3666-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation