Stabilization of Enzymes by Using Thermophiles

  • Protocol
  • First Online:
Microbial Steroids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2704))

  • 390 Accesses

Abstract

Manufactured steroid compounds have many applications in the pharmaceutical industry. Due to the chemical complexity and chirality of steroids, there is an increasing demand for enzyme-based bioconversion processes to replace those based on chemical synthesis. In this context, thermostability of the involved enzymes is a highly desirable property as both the increased half-life of the enzyme and the enhanced solubility of substrates and products will improve the yield of the reactions. Metagenomic libraries from thermal environments are potential sources of thermostable enzymes of prokaryotic origin, but the number of expected hits could be quite low for enzymes handling substrates such as steroids, rarely found in prokaryotes. An alternative to metagenome screening is the selection of thermostable variants of well-known steroid-processing enzymes. Here we review and detail a protocol for such selection, where error-prone PCR (epPCR) is used to introduce random mutations into a gene to create a variants library for further selection of thermostable variants in the thermophile Thermus thermophilus. The method involves the use of folding interference vectors where the proper folding of the enzyme of interest at high temperature is linked to the folding of a reporter encoding a selectable property such as thermostable resistance to kanamycin, leading to a life-or-death selection of variants of reinforced folding independently of the activity of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. García JL, Uhía I, Galán B (2012) Catabolism and biotechnological applications of cholesterol degrading bacteria. Microb Biotechnol 5:679–699

    Article  PubMed  PubMed Central  Google Scholar 

  2. Plessis-Rosloniec KZD (2011) Steroid transformation by Rhodococcus strains and bacterial cytochrome P450 enzymes. Dissertation, University of Groningen

    Google Scholar 

  3. Fernandes P, Cruz A, Angelova B, Pinheiro HM, Cabral JMS (2003) Microbial conversion of steroid compounds: recent developments. Enzym Microb Technol 32:688–705

    Article  CAS  Google Scholar 

  4. Diane W, Stephan R, Wolfgang Z (1997) Application of thermostable enzymes for carbohydrate modification. In: Praznik W, Huber A (eds) Carbohydrates as raw materials IV : proceedings of the fourth international workshop on carbohydrates as organic raw materials. WUV-Universitatverlag, Vienna

    Google Scholar 

  5. Fredrich A, Antrakian G (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl Environ Microbiol 62:2875–2882

    Article  Google Scholar 

  6. Leuschner C, Antranikan G (1995) Heat stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World J Microbiol Biotechnol 11:95–114

    Article  PubMed  Google Scholar 

  7. Zeikus JG, Vieille C, Savchenko A (1998) Thermozymes: biotechnology and structure-function relationships. Extremophiles 2:179–183

    Article  CAS  PubMed  Google Scholar 

  8. Goetschel R, Bar R (1992) Formation of mixed crystals in microbial conversion of sterols and steroids. Enzym Microb Technol 14:462–469

    Article  CAS  Google Scholar 

  9. Fernández-Arrojo L, Guazzaroni ME, López-Cortés N et al (2010) Metagenomic era for biocatalyst identification. Curr Opin Biotechnol 21:725–733

    Article  PubMed  Google Scholar 

  10. Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577

    Article  CAS  PubMed  Google Scholar 

  11. Bastien G, Arnal G, Bozonnet S et al (2013) Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnol Biofuels 6:78–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rashamuse K, Sanyika W, Ronneburg T et al (2012) A feruloyl esterase derived from a leachate metagenome library. BMB Rep 45:14–19

    Article  CAS  PubMed  Google Scholar 

  13. Chen IC, Lin WD, Hsu SK et al (2009) Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol 75:5161–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guazzaroni ME, Silva-Rocha R, Ward RJ (2015) Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening. Microb Biotechnol 8:52–64

    Article  CAS  PubMed  Google Scholar 

  15. Kumwenda B, Litthauer D, Bishop OT et al (2013) Analysis of protein thermostability enhancing factors in industrially important thermus bacteria species. Evol Bioinformatics Online 9:327–342

    Google Scholar 

  16. Zhou XX, Wang YB, Pan YJ, Li WF (2008) Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids 34:25–33

    Article  CAS  PubMed  Google Scholar 

  17. Vieille C, Zeikus GJ (1996) Thermozymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol 14:183–190

    Article  CAS  Google Scholar 

  18. Robinson-Rechavi M, Alibes A, Godzik A (2006) Contribution of electrostatic interactions, compactness and quaternary structure to protein thermostability: lessons from structural genomics of Thermotoga maritima. J Mol Biol 356:547–557

    Article  CAS  PubMed  Google Scholar 

  19. Szilágyi A, Závodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8:493–504

    Article  PubMed  Google Scholar 

  20. Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2:S40–S46

    Article  CAS  PubMed  Google Scholar 

  21. Jaenicke R, Bohm G (1998) The stability of proteins in extreme environments. Curr Opin Struct Biol 8:738–748

    Article  CAS  PubMed  Google Scholar 

  22. Jaenicke R (1991) Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 202:715–728

    Article  CAS  PubMed  Google Scholar 

  23. Trivedi S, Gehlot HS, Rao SR (2006) Protein thermostability in archaea and bacteria. Genetics and molecular research. Genet Mol Res 5:816–827

    CAS  PubMed  Google Scholar 

  24. Bornscheuer U, Kazlauskas RJ (2011) Survey of protein engineering strategies. Curr Protoc Protein Sci Chapter 26(Unit26):7

    Google Scholar 

  25. Rubingh DN, Grayling RA (2009) Protein engineering. In: Encyclopedia of life support systems. EOLSS, pp 140–165

    Google Scholar 

  26. Van Rossum T, Kengen SW, Van Der Oost J (2013) Reporter-based screening and selection of enzymes. FEBS J 280:2979–2996

    Article  PubMed  Google Scholar 

  27. Chautard H, Blas-Galindo E, Menguy T et al (2007) An activity-independent selection system of thermostable protein variants. Nat Methods 4:919–921

    Article  CAS  PubMed  Google Scholar 

  28. Mate DM, Rivera N, Sanchez-Freire E et al (2020) Thermostability enhancement of the Pseudomonas fluorescens esterase I by in vivo folding selection in Thermus thermophilus. Biotechnol Bioeng 117:30–38

    Article  CAS  PubMed  Google Scholar 

  29. Swarts DC, Makarova K, Wang Y et al (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21:743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lasa I, Castón JR, Fernández-Herrero LA et al (1992) Insertional mutagenesis in the extreme thermophilic eubacteria Thermus thermophilus HB8. Mol Microbiol 6:1555–1564

    Article  CAS  PubMed  Google Scholar 

  31. Cirino PC, Mayer KM, Umeno D (2003) Generating mutant libraries using error-prone PCR. Methods Mol Biol 231:3–9

    CAS  PubMed  Google Scholar 

  32. Wilson DS, Keefe AD (2001) Random mutagenesis by PCR. Curr Protoc Mol Biol Chapter 8:Unit8 3

    PubMed  Google Scholar 

  33. Zhao H, Moore JC, Volkov AA, Arnold FH (1999) Methods for optimizing industrial enzymes by directed evolution. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM, Washington, DC, pp 597–604

    Google Scholar 

  34. Hanson-Manful P, Patrick WM (2013) Construction and analysis of randomized protein-encoding libraries using error-prone PCR. Methods Mol Biol 996:251–267

    Article  CAS  PubMed  Google Scholar 

  35. Otte KB, Hauer B (2015) Enzyme engineering in the context of novel pathways and products. Curr Opin Biotechnol 35:16–22

    Article  CAS  PubMed  Google Scholar 

  36. Rubin-Pitel SB, Cho CMH, Chen W, Zhao H (2007) Directed evolution tools in bioproduct and bioprocess development. In: Yang ST (ed) Bioprocessing for value-added products from renewable resources. New technologies and applications. Elsevier B.V, pp 49–72

    Chapter  Google Scholar 

  37. Packer MS, Liu DR (2015) Methods for the directed evolution of proteins. Nat Rev Genet 16:379–394

    Article  CAS  PubMed  Google Scholar 

  38. Widmann M, Pleiss J, Samland AK (2012) Computational tools for rational protein engineering of aldolases. Comput Struct Biotechnol J 2:e201209016

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8:995–1005

    Article  CAS  PubMed  Google Scholar 

  40. Sobti M, Mabbutt BC (2013) Rational-based protein engineering: tips and tools. Methods Mol Biol 996:233–250

    Article  CAS  PubMed  Google Scholar 

  41. Khoury GA, Smadbeck J, Kieslich CA et al (2014) Protein folding and de novo protein design for biotechnological applications. Trends Biotechnol 32:99–109

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by grant RTC-2014-1439-1 from the Spanish Ministry of Economy and Competitiveness. An institutional grant from Fundación Ramón Areces to CBMSO is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurelio Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ribeiro, AL., Sánchez, M., Bosch, S., Berenguer, J., Hidalgo, A. (2023). Stabilization of Enzymes by Using Thermophiles. In: Barreiro, C., Barredo, JL. (eds) Microbial Steroids. Methods in Molecular Biology, vol 2704. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3385-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3385-4_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3384-7

  • Online ISBN: 978-1-0716-3385-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation