Cloning-Independent Expression and Screening of Enzymes Using Cell-Free Protein Synthesis Systems

  • Protocol
  • First Online:
Cell-Free Protein Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1118))

Abstract

We present a strategy for expression and screening of microbial enzymes without involving cloning procedures. Libraries of putative ω-transaminases (ω-TA) and mutated Candida antarctica lipase B (CalB) are PCR-amplified from bacterial colonies and directly expressed in an Escherichia coli-based cell-free protein synthesis system. The open nature of cell-free protein synthesis system also allows streamlined analysis of the enzymatic activity of the expressed enzymes, which greatly shortens the time required for enzyme screening.

We expect that the proposed strategy will provide a universal platform for bridging the information gap between nucleotide sequence and protein function, in order to accelerate the discovery of novel enzymes. The proposed strategy can also serve as a viable option for the rapid and precise tuning of enzyme molecules, not only for analytical purposes, but also for industrial applications. This is accomplished via large-scale production using microbial cells transformed with variant genes selected from the cell-free expression screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  CAS  PubMed  Google Scholar 

  2. Gorbalenya AE, Koonin EV, Lai MM (1991) Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288:201–205

    Article  CAS  PubMed  Google Scholar 

  3. Schmidt AJ, Ryjenkov DA, Gomelsky M (2005) The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187:4774–4781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Entzeroth M (2003) Emerging trends in high-throughput screening. Curr Opin Pharmacol 3:522–529

    Article  CAS  PubMed  Google Scholar 

  5. Goddard JP, Reymond JL (2004) Recent advances in enzyme assays. Trends Biotechnol 22:363–370

    Article  CAS  PubMed  Google Scholar 

  6. Hertzberg RP, Pope AJ (2000) High-throughput screening: new technology for the 21st century. Curr Opin Chem Biol 4:445–451

    Article  CAS  PubMed  Google Scholar 

  7. Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Turner NJ (2003) Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol 21:474–478

    Article  CAS  PubMed  Google Scholar 

  9. Wahler D, Reymond JL (2001) High-throughput screening for biocatalysts. Curr Opin Biotechnol 12:535–544

    Article  CAS  PubMed  Google Scholar 

  10. Hibbert EG, Dalby PA (2005) Directed evolution strategies for improved enzymatic performance. Microb Cell Fact 4:29

    Article  PubMed Central  PubMed  Google Scholar 

  11. Ottosson J, Rotticci-Mulder JC, Rotticci D et al (2001) Rational design of enantioselective enzymes requires considerations of entropy. Protein Sci 10:1769–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Jewett MC, Calhoun KA, Voloshin A et al (2008) An integrated cell-free metabolic platform for protein production and synthetic biology. Mol Syst Biol 4:220

    Article  PubMed Central  PubMed  Google Scholar 

  13. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23: 150–156

    Article  CAS  PubMed  Google Scholar 

  14. Murthy TV, Wu W, Qiu QQ et al (2004) Bacterial cell-free system for high-throughput protein expression and a comparative analysis of Escherichia coli cell-free and whole cell expression systems. Protein Expr Purif 36: 217–225

    Article  CAS  PubMed  Google Scholar 

  15. Sawasaki T, Ogasawara T, Morishita R et al (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 99:14652–14657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Shimizu Y, Kuruma Y, Ying BW et al (2006) Cell-free translation systems for protein engineering. FEBS J 273:4133–4140

    Article  CAS  PubMed  Google Scholar 

  17. Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22:538–545

    Article  CAS  PubMed  Google Scholar 

  18. Park CG, Kim TW, Oh IS et al (2009) Expression of functional Candida antarctica lipase B in a cell-free protein synthesis system derived from Escherichia coli. Biotechnol Prog 25:589–593

    Article  CAS  PubMed  Google Scholar 

  19. Crowley LV (1967) The Reitman-Frankel colorimetric transaminase procedure in suspected myocardial infarction. Clin Chem 13: 482–487

    CAS  PubMed  Google Scholar 

  20. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kwon, YC., Song, JK., Kim, DM. (2014). Cloning-Independent Expression and Screening of Enzymes Using Cell-Free Protein Synthesis Systems. In: Alexandrov, K., Johnston, W. (eds) Cell-Free Protein Synthesis. Methods in Molecular Biology, vol 1118. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-782-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-782-2_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-781-5

  • Online ISBN: 978-1-62703-782-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation