Quantifying CBM–Carbohydrate Interactions Using Microscale Thermophoresis

  • Protocol
  • First Online:
Carbohydrate-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2657))

  • 634 Accesses

Abstract

Microscale thermophoresis (MST) is an emerging technology for studying a broad range of biomolecular interactions with a high sensitivity. The affinity constant can be obtained for a wide range of molecules within minutes based on reactions in microliters. Here we describe the application of MST in quantifying protein–carbohydrate interactions. A CBM3a and a CBM4 are titrated with insoluble substrate (cellulose nanocrystal) and soluble oligosaccharide (xylohexaose), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott DW, Boraston AB (2012) Quantitative approaches to the analysis of carbohydrate-binding module function, 1st ed. Methods Enzymol. https://doi.org/10.1016/B978-0-12-415931-0.00011-2

  2. Duhr S, Braun D (2006) Thermophoretic depletion follows boltzmann distribution. Phys Rev Lett 96:1–4. https://doi.org/10.1103/PhysRevLett.96.168301

    Article  CAS  Google Scholar 

  3. Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682. https://doi.org/10.1073/pnas.0603873103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jerabek-Willemsen M, André T, Wanner R et al (2014) MicroScale thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113. https://doi.org/10.1016/j.molstruc.2014.03.009

    Article  CAS  Google Scholar 

  5. Baaske P, Wienken CJ, Reineck P et al (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chemie Int Ed 49:2238–2241. https://doi.org/10.1002/anie.200903998

    Article  CAS  Google Scholar 

  6. Tormo J, Lamed R, Chirino AJ et al (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu H, Ioannou E, Henrissat B, Montanier CY et al (2021) Multimodularity of a GH10 xylanase found in the termite gut metagenome. Appl Environ Microbiol 87(3). https://doi.org/10.1128/AEM.01714-20

  8. Martinez T, Texier H, Nahoum V et al (2015) Probing the functions of carbohydrate binding modules in the cbel protein from the oomycete phytophthora parasitica. PLoS One 10:1–14. https://doi.org/10.1371/journal.pone.0137481

    Article  CAS  Google Scholar 

  9. Blake AW, Mccartney L, Flint JE et al (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329. https://doi.org/10.1074/jbc.M605903200

    Article  CAS  PubMed  Google Scholar 

  10. Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. In: Proteomics protocols handbook. Humana Press, Totowa, pp 571–607

    Chapter  Google Scholar 

Download references

Acknowledgment

We acknowledge the Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FR 3450), CNRS, Université de Toulouse, UPS, Castanet-Tolosan, France, and the IDEX “UNITI” Université de Toulouse (GO-AHEAD project) for the NanoTemper Monolith NT.115 facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Dumon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, H., Montanier, C.Y., Dumon, C. (2023). Quantifying CBM–Carbohydrate Interactions Using Microscale Thermophoresis. In: Abbott, D.W., Zandberg, W.F. (eds) Carbohydrate-Protein Interactions. Methods in Molecular Biology, vol 2657. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3151-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3151-5_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3150-8

  • Online ISBN: 978-1-0716-3151-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation