Electrophysiological Techniques for Studying Tactile Perception in Rats

  • Protocol
  • First Online:
Somatosensory Research Methods

Part of the book series: Neuromethods ((NM,volume 196))

Abstract

Neurons communicate by electrical and chemical signals. Neurophysiological studies measuring and manipulating these signals are therefore of utmost importance to understand neural function. In this chapter, we review an extensive set of tools used in our laboratory to study tactile processing in rats. After a very brief summary of the anatomy and physiology of the sense of touch, instrumentation for generating mechanical stimuli is covered in detail. Next, techniques for studying mechanoreceptive afferents are presented. Remaining sections include electroencephalography (EEG), electrocorticography (EcoG), local field potentials (LFP), and extracellular spike recordings for the brain. Acute and chronic preparations for recording from the somatosensory cortex are reviewed in line with the current state-of-the-art technology for electrodes and equipment. Dedicated sections are devoted to electrical microstimulation of neural tissue and microinjection of drugs, which allow manipulation of the somatosensory system for basic and applied research. The material presented in this chapter is also useful for guiding neural engineering applications such as neuroprostheses and brain-machine interfaces (BMI), at their initial developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
GBP 34.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Corniani G, Saal HP (2020) Tactile innervation densities across the whole body. J Neurophysiol 124:1229–1240. https://doi.org/10.1152/jn.00313.2020

    Article  PubMed  Google Scholar 

  2. Güçlü B (2021) Introduction to somatosensory neuroprostheses. In: Güçlü B (ed) Somatosensory feedback for neuroprosthetics. Elsevier, pp 3–40

    Google Scholar 

  3. Handler A, Ginty DD (2021) The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci 22:521–537. https://doi.org/10.1038/s41583-021-00489-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Middleton SJ, Perez-Sanchez J, Dawes JM (2021) The structure of sensory afferent compartments in health and disease. J Anat 241:1186. https://doi.org/10.1111/joa.13544

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fox K, Woolsey T (2008) Barrel Cortex. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Rice FL, Kinnman E, Aldskogius H et al (1993) The innervation of the mystacial pad of the rat as revealed by PGP 9.5 immunofluorescence. J Comp Neurol 337:366–385. https://doi.org/10.1002/cne.903370303

    Article  CAS  PubMed  Google Scholar 

  7. Guzun L, Fortier-Poisson P, Langlais J-S, Smith AM (2021) Tactile sensitivity in the rat: a correlation between receptor structure and function. Exp Brain Res 239:3457–3469. https://doi.org/10.1007/s00221-021-06193-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wai V, Roberts L, Michaud J et al (2021) The anatomical distribution of mechanoreceptors in mouse hind paw skin and the influence of integrin α1β1 on meissner-like corpuscle density in the footpads. Front Neuroanat 15:628711. https://doi.org/10.3389/fnana.2021.628711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coste B, Mathur J, Schmidt M et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. https://doi.org/10.1126/science.1193270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ebner FF, Kaas JH (2015) Somatosensory system. In: The rat nervous system. Elsevier, pp 675–701

    Chapter  Google Scholar 

  11. Sachdev RN, Sellien H, Ebner FF (2000) Direct inhibition evoked by whisker stimulation in somatic sensory (SI) barrel field cortex of the awake rat. J Neurophysiol 84(3):1497–1504

    Article  CAS  PubMed  Google Scholar 

  12. Martin C, Berwick J, Johnston D et al (2002) Optical imaging spectroscopy in the unanaesthetised rat. J Neurosci Methods 120:25–34

    Article  PubMed  Google Scholar 

  13. Gener T, Reig R, Sanchez-Vives MV (2009) A new paradigm for the reversible blockage of whisker sensory transmission. J Neurosci Methods 176:63

    Article  PubMed  Google Scholar 

  14. Walker JL, Monjaraz-Fuentes F, Pedrow CR, Rector DM (2011) Precision rodent whisker stimulator with integrated servo-locked control and displacement measurement. J Neurosci Methods 196:20–30. https://doi.org/10.1016/j.jneumeth.2010.12.008

    Article  PubMed  Google Scholar 

  15. Krupa DJ, Brisben AJ, Nicolelis MA (2001) A multi-channel whisker stimulator for producing spatiotemporally complex tactile stimuli. J Neurosci Methods 104:199

    Article  CAS  PubMed  Google Scholar 

  16. Topchiy IA, Wood RM, Peterson B et al (2009) Conditioned lick behavior and evoked responses using whisker twitches in head restrained rats. Behav Brain Res 197:16–23. https://doi.org/10.1016/j.bbr.2008.07.032

    Article  PubMed  Google Scholar 

  17. Rousche PJ, Petersen RS, Battiston S et al (1999) Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array. J Neurosci Methods 90:57–66

    Article  CAS  PubMed  Google Scholar 

  18. Ewert TA, Vahle-Hinz C, Engel AK (2008) High-frequency whisker vibration is encoded by phase-locked responses of neurons in the rat’s barrel cortex. J Neurosci 28:5359–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tsytsarev V, Pope D, Pumbo E, Garver W (2010) Intrinsic optical imaging of directional selectivity in rat barrel cortex: application of a multidirectional magnetic whisker stimulator. J Neurosci Methods 189:80–83

    Article  PubMed  Google Scholar 

  20. Adibi M, Arabzadeh E (2011) A comparison of neuronal and behavioral detection and discrimination performances in rat whisker system. J Neurophysiol 105:356–365. https://doi.org/10.1152/jn.00794.2010

    Article  PubMed  Google Scholar 

  21. Tahon K, Wijnants M, De Schutter E (2011) The RAT-ROTADRUM: a reaction time task depending on a continuous stream of tactile sensory information to the rat. J Neurosci Methods 200:153–163. https://doi.org/10.1016/j.jneumeth.2011.06.031

    Article  PubMed  Google Scholar 

  22. Knutsen PM, Pietr M, Ahissar E (2006) Haptic object localization in the vibrissal system: behavior and performance. J Neurosci 26(33):8451–8464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prigg T, Goldreich D, Carvell GE, Simons DJ (2002) Texture discrimination and unit recordings in the rat whisker/barrel system. Physiol Behav 77:671–675

    Article  CAS  PubMed  Google Scholar 

  24. Wiest MC, Thomson E, Pantoja J, Nicolelis MAL (2010) Changes in S1 neural responses during tactile discrimination learning. J Neurophysiol 104:300–312. https://doi.org/10.1152/jn.00194.2010

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mehta SB, Whitmer D, Figueroa R et al (2007) Active spatial perception in the vibrissa scanning sensorimotor system. PLoS Biol 5:e15

    Article  PubMed  PubMed Central  Google Scholar 

  26. Quairiaux C, Armstrong-James M, Welker E (2007) Modified sensory processing in the barrel cortex of the adult mouse after chronic whisker stimulation. J Neurophysiol 97(3):2130–2147

    Article  PubMed  Google Scholar 

  27. Hulsey DR, Mian TM, Darrow MJ, Hays SA (2019) Quantitative assessment of cortical somatosensory digit representations after median and ulnar nerve injury in rats. Exp Brain Res 237:2297–2304. https://doi.org/10.1007/s00221-019-05593-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Devecioğlu İ, Güçlü B (2013) Asymmetric response properties of rapidly adapting mechanoreceptive fibers in the rat glabrous skin. Somatosens Mot Res 30:16–29. https://doi.org/10.3109/08990220.2012.732128

    Article  PubMed  Google Scholar 

  29. Vardar B, Güçlü B (2020) Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 225:1761–1776. https://doi.org/10.1007/s00429-020-02091-w

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi A, Yoshida T, Ohki K (2018) Cell type specific representation of vibro-tactile stimuli in the mouse primary somatosensory cortex. Front Neural Circuits 12:109. https://doi.org/10.3389/fncir.2018.00109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morandell K, Huber D (2017) The role of forelimb motor cortex areas in goal directed action in mice. Sci Rep 7(1):15759. https://doi.org/10.1038/s41598-017-15835-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Devecioğlu İ, Güçlü B (2015) A novel vibrotactile system for stimulating the glabrous skin of awake freely behaving rats during operant conditioning. J Neurosci Methods 242:41–51. https://doi.org/10.1016/j.jneumeth.2015.01.004

    Article  PubMed  Google Scholar 

  33. Devecioğlu İ, Güçlü B (2017) Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats. J Neural Eng 14(1):016010. https://doi.org/10.1088/1741-2552/14/1/016010

    Article  PubMed  Google Scholar 

  34. Özturk S, Devecioglu I, Beygi M et al (2019) Real-time performance of a tactile neuroprosthesis on awake behaving rats. IEEE Trans Neural Syst Rehabil Eng 27:1053–1062. https://doi.org/10.1109/TNSRE.2019.2910320

    Article  PubMed  Google Scholar 

  35. Lechner SG, Lewin GR (2013) Hairy sensation. Physiology 28:142–150. https://doi.org/10.1152/physiol.00059.2012

    Article  CAS  PubMed  Google Scholar 

  36. Foffani G, Tutunculer B, Moxon KA (2004) Role of spike timing in the forelimb somatosensory cortex of the rat. J Neurosci 24:7266–7271. https://doi.org/10.1523/JNEUROSCI.2523-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yıldız MZ, Güçlü B (2013) Relationship between vibrotactile detection threshold in the Pacinian channel and complex mechanical modulus of the human glabrous skin. Somatosens Mot Res 30:37–47. https://doi.org/10.3109/08990220.2012.754754

    Article  PubMed  Google Scholar 

  38. Cohen JC, Makous JC, Bolanowski SJ (1999) Under which conditions do the skin and probe decouple during sinusoidal vibrations? Exp Brain Res 129:211–217. https://doi.org/10.1007/s002210050891

    Article  CAS  PubMed  Google Scholar 

  39. Furuta T, Bush NE, Yang AE-T et al (2020) The cellular and mechanical basis for response characteristics of identified primary afferents in the rat vibrissal system. Curr Biol 30:815–826. https://doi.org/10.1016/j.cub.2019.12.068

    Article  CAS  PubMed  Google Scholar 

  40. Elyahoodayan S, Larson C, Cobo AM et al (2020) Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve. J Neurosci Methods 336:108634

    Article  CAS  PubMed  Google Scholar 

  41. Mathews KS, Wark HA, Normann RA (2014) Assessment of rat sciatic nerve function following acute implantation of high density utah slanted electrode array (25 electrodes/mm2) based on neural recordings and evoked muscle activity. Muscle Nerve 50(3):417–424

    Article  PubMed  Google Scholar 

  42. del Valle J, Rodríguez-Meana B, Navarro X (2021) Neural electrodes for long-term tissue interfaces. In: Güçlü B (ed) Somatosensory feedback for neuroprosthetics. Elsevier, pp 509–536

    Chapter  Google Scholar 

  43. Leem JW, Willis WD, Chung JM (1993) Cutaneous sensory receptors in the rat foot. J Neurophysiol 69:1684–1699. https://doi.org/10.1152/jn.1993.69.5.1684

    Article  CAS  PubMed  Google Scholar 

  44. Yeager JD, Phillips DJ, Rector DM, Bahr DF (2008) Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods 173:279–285. https://doi.org/10.1016/j.jneumeth.2008.06.024

    Article  PubMed  PubMed Central  Google Scholar 

  45. Spinks RL, Kraskov A, Brochier T et al (2008) Selectivity for grasp in local field potential and single neuron activity recorded simultaneously from M1 and F5 in the awake macaque monkey. J Neurosci 28:10961–10971. https://doi.org/10.1523/JNEUROSCI.1956-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lindén H, Tetzlaff T, Potjans TC et al (2011) Modeling the spatial reach of the LFP. Neuron 72:859. https://doi.org/10.1016/j.neuron.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  47. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  PubMed  PubMed Central  Google Scholar 

  48. Watson BO, Ding M, Buzsáki G (2018) Temporal coupling of field potentials and action potentials in the neocortex. Eur J Neurosci 48:2482–2497. https://doi.org/10.1111/ejn.13807

    Article  PubMed  PubMed Central  Google Scholar 

  49. Burle B, Spieser L, Roger C et al (2015) Spatial and temporal resolutions of EEG: is it really black and white? A scalp current density view. Int J Psychophysiol 97:210–220. https://doi.org/10.1016/j.ijpsycho.2015.05.004

    Article  PubMed  PubMed Central  Google Scholar 

  50. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Book  Google Scholar 

  51. Leeb R, Tonin L, Rohm M et al (2015) Towards independence: a BCI telepresence robot for people with severe motor disabilities. Proc IEEE 103(6):969–982. https://doi.org/10.1109/JPROC.2015.2419736

    Article  Google Scholar 

  52. Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11(5):449–455. https://doi.org/10.3109/17482961003777470

    Article  PubMed  Google Scholar 

  53. Lesenfants D, Habbal D, Lugo Z et al (2014) An independent SSVEP-based brain-computer interface in locked-in syndrome. J Neural Eng 11(3):035002. https://doi.org/10.1088/1741-2560/11/3/035002

    Article  CAS  PubMed  Google Scholar 

  54. Li Y, Long J, Yu T et al (2010) An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Biomed Eng 57(10):2495–2505. https://doi.org/10.1109/TBME.2010.2055564

    Article  PubMed  Google Scholar 

  55. De Vos M, Kroesen M, Emkes R, Debener S (2014) P300 speller BCI with a mobile EEG system: comparison to a traditional amplifier. J Neural Eng 11(3):036008. https://doi.org/10.1088/1741-2560/11/3/036008

    Article  PubMed  Google Scholar 

  56. Chauvette S, Soltani S, Seigneur J, Timofeev I (2016) In vivo models of cortical acquired epilepsy. J Neurosci Methods 260:185–201

    Article  PubMed  Google Scholar 

  57. Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123:299–336. https://doi.org/10.1016/j.neuroscience.2003.08.051

    Article  CAS  PubMed  Google Scholar 

  58. Yang T, Hakimian S, Schwartz TH (2014) Intraoperative electroCorticoGraphy (ECog): indications, techniques, and utility in epilepsy surgery. Epileptic Disord 16(3):271–279. https://doi.org/10.1684/epd.2014.0675

    Article  CAS  PubMed  Google Scholar 

  59. Hill NJ, Lal TN, Schroder M et al (2006) Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans Neural Syst Rehabil Eng 14:183–186

    Article  PubMed  Google Scholar 

  60. Leuthardt EC, Schalk G, Wolpaw JR et al (2004) A brain–computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71. https://doi.org/10.1088/1741-2560/1/2/001

    Article  PubMed  Google Scholar 

  61. Wilson JA, Felton EA, Garell PC et al (2006) ECoG factors underlying multimodal control of a brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14:246–250

    Article  PubMed  Google Scholar 

  62. Andersen RA, Musallam S, Pesaran B (2004) Selecting the signals for a brain-machine interface. Curr Opin Neurobiol 14(6):720–726

    Article  CAS  PubMed  Google Scholar 

  63. Ludwig KA, Miriani RM, Langhals NB et al (2009) Using a common average reference to improve cortical neuron recordings from microelectrode arrays. J Neurophysiol 101(3):1679–1689. https://doi.org/10.1152/jn.90989.2008

    Article  PubMed  Google Scholar 

  64. Cogan SF (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309. https://doi.org/10.1146/annurev.bioeng.10.061807.160518

    Article  CAS  PubMed  Google Scholar 

  65. Kuzum D, Takano H, Shim E et al (2014) Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun 5:17–19. https://doi.org/10.1038/ncomms6259

    Article  CAS  Google Scholar 

  66. Venkatraman S, Hendricks J, King ZA et al (2011) In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans Neural Syst Rehabil Eng 19:307–316. https://doi.org/10.1109/TNSRE.2011.2109399

    Article  PubMed  Google Scholar 

  67. Khodagholy D, Gelinas JN, Thesen T et al (2015) NeuroGrid: recording action potentials from the surface of the brain. Nat Neurosci 18:310–315. https://doi.org/10.1038/nn.3905

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Cortadella R, Schwesig G, Jeschke C et al (2021) Graphene active sensor arrays for long-term and wireless map** of wide frequency band epicortical brain activity. Nat Commun 12:1–17. https://doi.org/10.1038/s41467-020-20546-w

    Article  CAS  Google Scholar 

  69. Humphrey DR, Schmidt EM (1990) Extracellular single-unit recording methods. In: Boulton AA, Baker GB, Vanderwolf CH (eds) Neurophysiological techniques: applications to neural systems. Springer

    Google Scholar 

  70. Loeb GE, Bak M, Salcman M, Schmidt E (1977) Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans Biomed Eng:121–128

    Google Scholar 

  71. Schmidt E, McIntosh J, Bak M (1988) Long-term implants of Parylene-C coated microelectrodes. Med Biol Eng Comput 26:96–101

    Article  CAS  PubMed  Google Scholar 

  72. Plexon Inc – Neuroscience Technology. In: Plexon. https://plexon.com/. Accessed 6 Feb 2022

  73. Jun JJ, Steinmetz NA, Siegle JH et al (2017) Fully integrated silicon probes for high-density recording of neural activity. Nature 551:232–236. https://doi.org/10.1038/nature2463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wise KD (2005) Silicon microsystems for neuroscience and neural prostheses. IEEE Eng Med Biol Mag 24:22–29. https://doi.org/10.1109/MEMB.2005.1511497

    Article  PubMed  Google Scholar 

  75. NeuroNexus. https://www.neuronexus.com/2021-Probe-Catalog.pdf. Accessed 6 Feb 2022

  76. Lehew G, Nicolelis MAL (2008) State-of-the-Art microwire array design for chronic neural recordings in behaving animals. In: Nicolelis MAL (ed) Methods for neural ensemble recordings, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  77. Williams JC, Rennaker RL, Kipke DR (1999) Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res Protocol 4:303–313. https://doi.org/10.1016/S1385-299X(99)00034-3

    Article  CAS  Google Scholar 

  78. Porada I, Bondar I, Spatz W, Krüger J (2000) Rabbit and monkey visual cortex: more than a year of recording with up to 64 microelectrodes. J Neurosci Methods 95:13–28

    Article  CAS  PubMed  Google Scholar 

  79. McNaughton BL, O’Keefe J, Barnes CA (1983) The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 8:391–397

    Article  CAS  PubMed  Google Scholar 

  80. Chelaru MI, Jog MS (2005) Spike source localization with tetrodes. J Neurosci Methods 142:305–315. https://doi.org/10.1016/j.jneumeth.2004.09.004

    Article  PubMed  Google Scholar 

  81. Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63:43–54. https://doi.org/10.1016/0165-0270(95)00085-2

    Article  CAS  PubMed  Google Scholar 

  82. Harris KD, Henze DA, Csicsvari J et al (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84:401–414. https://doi.org/10.1152/jn.2000.84.1.401

    Article  CAS  PubMed  Google Scholar 

  83. O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330

    Article  PubMed  Google Scholar 

  84. Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058

    Article  CAS  PubMed  Google Scholar 

  85. Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451. https://doi.org/10.1038/nn1233

    Article  CAS  PubMed  Google Scholar 

  86. Blanche TJ, Spacek MA, Hetke JF, Swindale NV (2005) Polytrodes: high-density silicon electrode arrays for large-scale multiunit recording. J Neurophysiol 93:2987–3000. https://doi.org/10.1152/jn.01023.2004

    Article  PubMed  Google Scholar 

  87. Schjetnan AGP, Luczak A (2011) Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. JoVE:3282. https://doi.org/10.3791/3282

  88. Rousche PJ, Normann RA (1998) Chronic recording capability of the Utah Intracortical Electrode Array in cat sensory cortex. J Neurosci Methods 82(1):1–15. https://doi.org/10.1016/S0165-0270(98)00031-4

    Article  CAS  PubMed  Google Scholar 

  89. Campbell PK, Jones KE, Huber RJ et al (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng 38:758–768. https://doi.org/10.1109/10.83588

    Article  CAS  PubMed  Google Scholar 

  90. Hoogerwerf AC, Wise KD (1994) A three-dimensional microelectrode array for chronic neural recording. IEEE Trans Biomed Eng 41:1136–1146. https://doi.org/10.1109/10.335862

    Article  CAS  PubMed  Google Scholar 

  91. Normann RA, Maynard EM, Rousche PJ, Warren DJ (1999) A neural interface for a cortical vision prosthesis. Vis Res 39:2577–2587. https://doi.org/10.1016/S0042-6989(99)00040-1

    Article  CAS  PubMed  Google Scholar 

  92. Rousche PJ, Normann RA (1992) A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng 20:413–422

    Article  CAS  PubMed  Google Scholar 

  93. Scholten K, Meng E (2015) Materials for microfabricated implantable devices: a review. Lab Chip 15:4256–4272. https://doi.org/10.1039/C5LC00809C

    Article  CAS  PubMed  Google Scholar 

  94. Drake KL, Wise KD, Farraye J et al (1988) Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE Trans Biomed Eng 35:719–732

    Article  CAS  PubMed  Google Scholar 

  95. Rivnay J, Wang H, Fenno L et al (2017) Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 3:e1601649. https://doi.org/10.1126/sciadv.1601649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fernández E, Greger B, House PA et al (2014) Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 7:24. https://doi.org/10.3389/fneng.2014.00024

    Article  PubMed  PubMed Central  Google Scholar 

  97. McDermott MD, Zhang J, Otto KJ (2015) Improving the brain machine interface via multiple Tetramethyl Orthosilicate sol-gel coatings on microelectrode arrays. In: The 7th international IEEE/EMBS conference on neural engineering

    Google Scholar 

  98. Liu J, Fu T-M, Cheng Z et al (2015) Syringe-injectable electronics. Nano Lett 15(10):6979–6984. https://doi.org/10.1038/nnano.2015.115

    Article  CAS  Google Scholar 

  99. Salcman M, Bak MJ (1976) A new chronic recording intracortical microelectrode. Med Biol Eng 14:42–50

    Article  CAS  PubMed  Google Scholar 

  100. Schmidt E, Bak M, McIntosh J (1976) Long-term chronic recording from cortical neurons. Exp Neurol 52:496–506

    Article  CAS  PubMed  Google Scholar 

  101. Somogyvári Z, Cserpán D, Ulbert I, Érdi P (2012) Localization of single-cell current sources based on extracellular potential patterns: the spike CSD method. Eur J Neurosci 36:3299–3313. https://doi.org/10.1111/j.1460-9568.2012.08249.x

    Article  PubMed  Google Scholar 

  102. Kipke DR, Shain W, Buzsaki G et al (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28:11830–11838. https://doi.org/10.1523/JNEUROSCI.3879-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Delgado Ruz I, Schultz SR (2014) Localising and classifying neurons from high density MEA recordings. J Neurosci Methods 233:115–128. https://doi.org/10.1016/j.jneumeth.2014.05.037

    Article  PubMed  Google Scholar 

  104. Obien MEJ, Deligkaris K, Bullmann T et al (2015) Revealing neuronal function through microelectrode array recordings. Front Neurosci 8:423. https://doi.org/10.3389/fnins.2014.00423

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fiáth R, Meszéna D, Somogyvári Z et al (2021) Recording site placement on planar silicon-based probes affects signal quality in acute neuronal recordings. Sci Rep 11:1–18

    Article  Google Scholar 

  106. Du J, Blanche TJ, Harrison RR et al (2011) Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS One 6:e26204. https://doi.org/10.1371/journal.pone.0026204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Raducanu BC, Yazicioglu RF, Lopez CM et al (2017) Time multiplexed active neural probe with 1356 parallel recording sites. Sensors (Basel) 17(10):2388. https://doi.org/10.3390/s17102388

    Article  PubMed  Google Scholar 

  108. Steinmetz NA, Aydin C, Lebedeva A et al (2021) Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372(6539):eabf4588. https://doi.org/10.1126/science.abf4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kipke DR, Vetter RJ, Williams JC, Hetke JF (2003) Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans Neural Syst Rehabil Eng 11:151–155. https://doi.org/10.1109/TNSRE.2003.814443

    Article  PubMed  Google Scholar 

  110. Ulyanova AV, Cottone C, Adam CD et al (2019) Multichannel silicon probes for awake hippocampal recordings in large animals. Front Neurosci 13:397. https://doi.org/10.3389/fnins.2019.00397

    Article  PubMed  PubMed Central  Google Scholar 

  111. Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86. https://doi.org/10.1016/j.expneurol.2012.09.013

    Article  PubMed  Google Scholar 

  112. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS et al (2011) Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatr 168:502–510. https://doi.org/10.1176/appi.ajp.2010.10081187

    Article  PubMed  Google Scholar 

  113. Bianco MG, Pullano SA, Citraro R et al (2020) Neural modulation of the primary auditory cortex by intracortical microstimulation with a bio-inspired electronic system. Bioengineering 7(1):23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Berg JA, Dammann JF, Tenore FV et al (2013) Behavioral demonstration of a somatosensory neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 21:500–507. https://doi.org/10.1109/TNSRE.2013.2244616

    Article  CAS  PubMed  Google Scholar 

  115. Fagg AH, Hatsopoulos NG, London BM et al (2009) Toward a biomimetic, bidirectional, brain machine interface. In: Conference proceedings: Annual international conference of the IEEE Engineering in Medicine and Biology Society 2009, pp 3376–3380

    Chapter  Google Scholar 

  116. Rousche PJ, Otto KJ, Reilly MP, Kipke DR (2003) Single electrode micro-stimulation of rat auditory cortex: an evaluation of behavioral performance. Hear Res 179:62–71. https://doi.org/10.1016/s0378-5955(03)00081-9

    Article  PubMed  Google Scholar 

  117. Merrill DR, Bikson M, Jefferys JGR (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198. https://doi.org/10.1016/j.jneumeth.2004.10.020

    Article  PubMed  Google Scholar 

  118. Kostarelos K, Vincent M, Hebert C, Garrido JA (2017) Graphene in the design and engineering of next-generation neural interfaces. Adv Mater 29:1700909. https://doi.org/10.1002/adma.201700909

    Article  CAS  Google Scholar 

  119. Spieth S, Schumacher A, Trenkle F et al (2014) Approaches for drug delivery with intracortical probes. Biomed Tech 59(4):291–303. https://doi.org/10.1515/bmt-2012-0096

    Article  Google Scholar 

  120. Noudoost B, Moore T (2011) A reliable microinjectrode system for use in behaving monkeys. J Neurosci Methods 194:218–223. https://doi.org/10.1016/j.jneumeth.2010.10.009

    Article  PubMed  Google Scholar 

  121. Spieth S, Schumacher A, Kallenbach C et al (2012) The NeuroMedicator—a micropump integrated with silicon microprobes for drug delivery in neural research. J Micromech Microeng 22:065020. https://doi.org/10.1088/0960-1317/22/6/065020

    Article  CAS  Google Scholar 

  122. Gerhardt GA, Palmer MR (1987) Characterization of the techniques of pressure ejection and microiontophoresis using in vivo electrochemistry. J Neurosci Methods 22:147–159. https://doi.org/10.1016/0165-0270(87)90009-4

    Article  CAS  PubMed  Google Scholar 

  123. Kang YN, Chou N, Jang J-W et al (2021) A 3D flexible neural interface based on a microfluidic interconnection cable capable of chemical delivery. Microsyst Nanoeng 7:66. https://doi.org/10.1038/s41378-021-00295-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Veith VK, Quigley C, Treue S (2016) A pressure injection system for investigating the neuropharmacology of information processing in awake behaving macaque monkey cortex. J Vis Exp: JoVE. https://doi.org/10.3791/53724

  125. Herr NR, Wightman RM (2013) Improved techniques for examining rapid dopamine signaling with iontophoresis. Front Biosci 5:249–257. https://doi.org/10.2741/e612

    Article  Google Scholar 

  126. Herr NR, Kile BM, Carelli RM, Wightman RM (2008) Electroosmotic flow and its contribution to iontophoretic delivery. Anal Chem 80:8635–8641. https://doi.org/10.1021/ac801547a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bevan P, Bradshaw CM, Pun RY et al (1979) The relative contribution of iontophoresis and electro-osmosis to the electrophoretic release of noradrenaline from multibarrelled micropipettes [proceedings]. Br J Pharmacol 67:478P–479P

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Walker T, Dillman N, Weiss ML (1995) A constant current source for extracellular microiontophoresis. J Neurosci Methods 63:127–136. https://doi.org/10.1016/0165-0270(95)00101-8

    Article  CAS  PubMed  Google Scholar 

  129. Lalley PM (1999) Microiontophoresis and pressure ejection. In: Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Berlin Heidelberg, pp 193–212

    Chapter  Google Scholar 

  130. Thiele A, Delicato LS, Roberts MJ, Gieselmann MA (2006) A novel electrode-pipette design for simultaneous recording of extracellular spikes and iontophoretic drug application in awake behaving monkeys. J Neurosci Methods 158:207–211. https://doi.org/10.1016/j.jneumeth.2006.05.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Budai D (2010) Carbon fiber-based microelectrodes and microbiosensors. In: Somerset VS (ed) Intelligent and biosensors, pp 269–288

    Google Scholar 

  132. Chen J, Wise KD, Hetke JF, Bledsoe SC (1997) A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans Biomed Eng 44:760–769. https://doi.org/10.1109/10.605435

    Article  CAS  PubMed  Google Scholar 

  133. John J, Li Y, Zhang J et al (2011) Microfabrication of 3D neural probes with combined electrical and chemical interfaces. J Micromech Microeng 21:105011. https://doi.org/10.1088/0960-1317/21/10/105011

    Article  CAS  Google Scholar 

  134. Kobayashi R, Kanno S, Lee S et al (2009) Development of double-sided Si neural probe with microfluidic channels using wafer direct bonding technique. In: 2009 4th international IEEE/EMBS conference on neural engineering. IEEE, pp 96–99

    Chapter  Google Scholar 

  135. Seidl K, Spieth S, Herwik S et al (2010) In-plane silicon probes for simultaneous neural recording and drug delivery. J Micromech Microeng 20:105006. https://doi.org/10.1088/0960-1317/20/10/105006

    Article  CAS  Google Scholar 

  136. Cheung KC, Djupsund K, Dan Y, Lee LP (2003) Implantable multichannel electrode array based on SOI technology. J Microelectromech Syst 12:179–184. https://doi.org/10.1109/JMEMS.2003.809962

    Article  CAS  Google Scholar 

  137. Guo K, Pei W, Li X et al (2012) Fabrication and characterization of implantable silicon neural probe with microfluidic channels. SCIENCE CHINA Technol Sci 55:1–5. https://doi.org/10.1007/s11431-011-4569-8

    Article  CAS  Google Scholar 

  138. Pellinen DS, Moon T, Vetter RJ et al (2005) Multifunctional flexible Parylene-based intracortical microelectrodes. In: 2005 IEEE engineering in medicine and biology 27th annual conference. IEEE, pp 5272–5275

    Chapter  Google Scholar 

  139. Takeuchi S, Ziegler D, Yoshida Y et al (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5:519–523. https://doi.org/10.1039/b417497f

    Article  CAS  PubMed  Google Scholar 

  140. Ziegler D, Suzuki T, Takeuchi S (2006) Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of Parylene. J Microelectromech Syst 15:1477–1482. https://doi.org/10.1109/JMEMS.2006.879681

    Article  CAS  Google Scholar 

  141. Rubehn B, Wolff SBE, Tovote P et al (2013) A polymer-based neural microimplant for optogenetic applications: design and first in vivo study. Lab Chip 13:579. https://doi.org/10.1039/c2lc40874k

    Article  CAS  PubMed  Google Scholar 

  142. Metz S, Bertsch A, Bertrand D, Renaud P (2004) Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens Bioelectron 19:1309–1318. https://doi.org/10.1016/j.bios.2003.11.021

    Article  CAS  PubMed  Google Scholar 

  143. Altuna A, Bellistri E, Cid E et al (2013) SU-8 based microprobes for simultaneous neural depth recording and drug delivery in the brain. Lab Chip 13:1422. https://doi.org/10.1039/c3lc41364k

    Article  CAS  PubMed  Google Scholar 

  144. Fernández LJ, Altuna A, Tijero M et al (2009) Study of functional viability of SU-8-based microneedles for neural applications. J Micromech Microeng 19:025007. https://doi.org/10.1088/0960-1317/19/2/025007

    Article  Google Scholar 

  145. Hochberg LR, Serruya MD, Friehs GM et al (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171. https://doi.org/10.1038/nature04970

    Article  CAS  PubMed  Google Scholar 

  146. Rohatgi P, Langhals NB, Kipke DR, Patil PG (2009) In vivo performance of a microelectrode neural probe with integrated drug delivery. Neurosurg Focus 27:E8. https://doi.org/10.3171/2009.4.FOCUS0983

    Article  PubMed  PubMed Central  Google Scholar 

  147. Leem JW, Willis WD, Weller SC, Chung JM (1993) Differential activation and classification of cutaneous afferents in the rat. J Neurophysiol 70:2411–2424. https://doi.org/10.1152/jn.1993.70.6.2411

    Article  CAS  PubMed  Google Scholar 

  148. Vardar B, Güçlü B (2017) Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Somatosens Mot Res 34:189–203. https://doi.org/10.1080/08990220.2017.1390450

    Article  PubMed  Google Scholar 

  149. Shoykhet M, Doherty D, Simons DJ (2000) Coding of deflection velocity and amplitude by whisker primary afferent neurons: implications for higher level processing. Somatosens Mot Res 17:171–180. https://doi.org/10.1080/08990220050020580

    Article  CAS  PubMed  Google Scholar 

  150. Pawson L, Prestia LT, Mahoney GK et al (2009) GABAergic/glutamatergic-glial/neuronal interaction contributes to rapid adaptation in Pacinian corpuscles. J Neurosci 29:2695–2705. https://doi.org/10.1523/JNEUROSCI.5974-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Khalsa PS, Zhang C, Qin YX (2000) Encoding of location and intensity of noxious indentation into rat skin by spatial populations of cutaneous mechano-nociceptors. J Neurophysiol 83:3049–3061

    Article  CAS  PubMed  Google Scholar 

  152. Güçlü B (2005) Maximizing the entropy of histogram bar heights to explore neural activity: a simulation study on auditory and tactile fibers. Acta Neurobiol Exp 65(4):399–407

    Google Scholar 

  153. Chapin JK, Lin C-S (1984) Map** the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213. https://doi.org/10.1002/cne.902290206

    Article  CAS  PubMed  Google Scholar 

  154. Oliveira LMO, Dimitrov DF (2008) Surgical techniques for chronic implantation of microwire arrays in rodents and primates. In: Nicolelis MAL (ed) Methods for neural ensemble recordings, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  155. Nicolelis MAL, Dimitrov D, Carmena JM et al (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci 100:11041–11046. https://doi.org/10.1073/pnas.1934665100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Venkatachalam S, Fee MS, Kleinfeld D (1999) Ultra-miniature headstage with 6-channel drive and vacuum-assisted micro-wire implantation for chronic recording from the neocortex. J Neurosci Methods 90:37–46

    Article  CAS  PubMed  Google Scholar 

  157. Bai Q, Wise KD, Anderson DJ (2000) A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans Biomed Eng 47:281–289

    Article  CAS  PubMed  Google Scholar 

  158. Hatsopoulos NG, Ojakangas CL, Paninski L, Donoghue JP (1998) Information about movement direction obtained from synchronous activity of motor cortical neurons. Proc Natl Acad Sci 95:15706–15711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Maynard E, Hatsopoulos N, Ojakangas C et al (1999) Neuronal interactions improve cortical population coding of movement direction. J Neurosci 19:8083–8093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Usoro JO, Dogra K, Abbott JR et al (2021) Influence of implantation depth on the performance of intracortical probe recording sites. Micromachines 12:1158. https://doi.org/10.3390/mi12101158

    Article  PubMed  PubMed Central  Google Scholar 

  161. Decharms RC, Blake DT, Merzenich MM (1999) A multielectrode implant device for the cerebral cortex. J Neurosci Methods 93:27–35

    Article  CAS  PubMed  Google Scholar 

  162. Hetke JF, Lund JL, Najafi K et al (1994) Silicon ribbon cables for chronically implantable microelectrode arrays. IEEE Trans Biomed Eng 41:314–321

    Article  CAS  PubMed  Google Scholar 

  163. Owen JH, Laschinger J, Bridwell K et al (1988) Sensitivity and specificity of somatosensory and neurogenic-motor evoked potentials in animals and humans. Spine 13(10):1111–1118

    Article  CAS  PubMed  Google Scholar 

  164. Sharma HS, Winkler T, Stålberg E et al (1991) Evaluation of traumatic spinal cord edema using evoked potentials recorded from the spinal epidural space: an experimental study in the rat. J Neurol Sci 102:150–162

    Article  CAS  PubMed  Google Scholar 

  165. Fehlings MG, Tator CH, Linden RD, Piper IR (1988) Motor and somatosensory evoked potentials recorded from the rat. Electroencephalogr Clin Neurophysiol 69:65–78. https://doi.org/10.1016/0013-4694(88)90036-3

    Article  CAS  PubMed  Google Scholar 

  166. Fehlings MG, Tator CH, Linden RD (1989) The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroencephalogr Clin Neurophysiol/Evoked Potentials Section 74:241–259. https://doi.org/10.1016/0168-5597(89)90055-5

    Article  CAS  Google Scholar 

  167. Fehlings MG, Tator CH (1992) The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 579:32–42. https://doi.org/10.1016/0006-8993(92)90738-U

    Article  CAS  PubMed  Google Scholar 

  168. Boyes WK, Cooper GP (1981) Acrylamide neurotoxicity: effects on far-field somatosensory evoked potentials in rats. Neurobehav Toxicol Teratol 3:487–490

    CAS  PubMed  Google Scholar 

  169. Edwards MSB, Powers SK, Baringer RA et al (1983) Evoked potentials in rats with misonidazole neurotoxicity. J Neuro-Oncol 1:115–123

    Article  CAS  Google Scholar 

  170. Oro J, Haghighi SS (1992) Effects of altering core body temperature on somatosensory and motor evoked potentials in rats. Spine 17:498–503. https://doi.org/10.1097/00007632-199205000-00005

    Article  CAS  PubMed  Google Scholar 

  171. Mouraux A, Iannetti GD (2008) Across-trial averaging of event-related EEG responses and beyond. Magn Reson Imaging 26:1041–1054. https://doi.org/10.1016/j.mri.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  172. Malekpour S, Gubner JA, Sethares WA (2018) Measures of generalized magnitude-squared coherence: differences and similarities. J Franklin Inst 355(5):2932–2950. https://doi.org/10.1016/j.jfranklin.2018.01.014

    Article  Google Scholar 

  173. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Lowet E, Roberts MJ, Bonizzi P et al (2016) Quantifying neural oscillatory synchronization: a comparison between spectral coherence and phase-locking value approaches. PLoS One 11(1):e0146443. https://doi.org/10.1371/journal.pone.0146443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Golabchi A, Kipke I Chronic penetrating arrays. In: NeuroNexus https://www.neuronexus.com/files/electrodearrays/penetrating/ChronicPenetratingArrays.pdf

  176. Quiroga R (2007) Spike sorting. Scholarpedia 2:3583. https://doi.org/10.4249/scholarpedia.3583

    Article  Google Scholar 

  177. Kim S, McNames J (2007) Automatic spike detection based on adaptive template matching for extracellular neural recordings. J Neurosci Methods 165:165–174. https://doi.org/10.1016/j.jneumeth.2007.05.033

    Article  PubMed  Google Scholar 

  178. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Machine Intell 11:674–693. https://doi.org/10.1109/34.192463

    Article  Google Scholar 

  179. Quiroga RQ, Nadasdy Z, Ben-Shaul Y (2004) Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput 16:1661–1687. https://doi.org/10.1162/089976604774201631

    Article  PubMed  Google Scholar 

  180. Chung JE, Magland JF, Barnett AH et al (2017) A fully automated approach to spike sorting. Neuron 95:1381–1394.e6. https://doi.org/10.1016/j.neuron.2017.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rossant C, Kadir SN, Goodman DFM et al (2016) Spike sorting for large, dense electrode arrays. Nat Neurosci 19:634–641. https://doi.org/10.1038/nn.4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pachitariu M, Steinmetz N, Kadir S et al (2016) Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. bioRxiv. https://doi.org/10.1101/061481

  183. Chaure FJ, Rey HG, Quian Quiroga R (2018) A novel and fully automatic spike-sorting implementation with variable number of features. J Neurophysiol 120:1859–1871. https://doi.org/10.1152/jn.00339.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pelleg D, Moore AW, others (2000) X-means: Extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th international conference on machine learning. pp 727–734

    Google Scholar 

  185. Wheeler BC, Nicolelis M (1999) Automatic discrimination of single units. In: Nicolelis M (ed) Methods for neural ensemble recordings. CRC Press, Boca Raton, pp 61–77

    Google Scholar 

  186. Steinmetz NA, Zatka-Haas P, Carandini M, Harris KD (2019) Distributed coding of choice, action and engagement across the mouse brain. Nature 576:266–273. https://doi.org/10.1038/s41586-019-1787-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Koivuniemi AS, Otto KJ (2012) The depth, waveform and pulse rate for electrical microstimulation of the auditory cortex. In: Annual international conference of the IEEE Engineering in Medicine and Biology Society. IEEE, San Diego, CA, pp 2489–2492

    Chapter  Google Scholar 

  188. Boinagrov D, Loudin J, Palanker D (2010) Strength–duration relationship for extracellular neural stimulation: numerical and analytical models. J Neurophysiol 104:2236–2248. https://doi.org/10.1152/jn.00343.2010

    Article  PubMed  PubMed Central  Google Scholar 

  189. Butovas S, Hormuzdi SG, Monyer H, Schwarz C (2006) Effects of electrically coupled inhibitory networks on local neuronal responses to intracortical microstimulation. J Neurophysiol 96:1227–1236. https://doi.org/10.1152/jn.01170.2005

    Article  CAS  PubMed  Google Scholar 

  190. Azin M, Guggenmos DJ, Barbay S et al (2011) A miniaturized system for spike-triggered intracortical microstimulation in an ambulatory rat. IEEE Trans Biomed Eng 58:2589–2597. https://doi.org/10.1109/TBME.2011.2159603

    Article  PubMed  Google Scholar 

  191. Venkatraman S, Elkabany K, Long JD et al (2009) A system for neural recording and closed-loop intracortical microstimulation in awake rodents. IEEE Trans Biomed Eng 56:15–22. https://doi.org/10.1109/TBME.2008.2005944

    Article  PubMed  Google Scholar 

  192. Dinse HR, Ragert P, Pleger B et al (2003) Pharmacological modulation of perceptual learning and associated cortical reorganization. Science 301:91–94. https://doi.org/10.1126/science.1085423

    Article  CAS  PubMed  Google Scholar 

  193. Recanzone GH, Merzenich MM, Dinse HR (1992) Expansion of the cortical representation of a specific skin field in primary somatosensory cortex by intracortical microstimulation. Cereb Cortex 2:181–196. https://doi.org/10.1093/cercor/2.3.181

    Article  CAS  PubMed  Google Scholar 

  194. Spengler F, Godde B, Dinse HR (1995) Effects of ageing on topographic organization of somatosensory cortex. Neuroreport 6:469–473

    Article  CAS  PubMed  Google Scholar 

  195. Butovas S, Schwarz C (2007) Detection psychophysics of intracortical microstimulation in rat primary somatosensory cortex. Eur J Neurosci 25:2161–2169. https://doi.org/10.1111/j.1460-9568.2007.05449.x

    Article  PubMed  Google Scholar 

  196. Semprini M, Bennicelli L, Vato A (2012) A parametric study of intracortical microstimulation in behaving rats for the development of artificial sensory channels. Conference proceedings: Annual international conference of the IEEE Engineering in Medicine and Biology Society 2012:799–802

    Google Scholar 

  197. Gottschaldt K, Vahle-Hinz C, Hicks TP (1983) Electrophysiological and micropharmacological studies on mechanisms of input-output transformation in single neurones of the somatosensory thalamus. In: Macchi G (ed) Somatosensory integration in the thalamus. Elsevier Science, Amsterdam, pp 199–216

    Google Scholar 

  198. Philip Hicks T (1984) The history and development of microiontophoresis in experimental neurobiology. Prog Neurobiol 22:185–240. https://doi.org/10.1016/0301-0082(84)90019-4

    Article  Google Scholar 

  199. Curtis DR, Eccles RM (1958) The effect of diffusional barriers upon the pharmacology of cells within the central nervous system. J Physiol 141:446–463. https://doi.org/10.1113/jphysiol.1958.sp005988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Curtis DR, Eccles RM (1958) The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J Physiol 141:435–445. https://doi.org/10.1113/jphysiol.1958.sp005987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bucher ES, Fox ME, Kim L et al (2014) Medullary norepinephrine neurons modulate local oxygen concentrations in the bed nucleus of the stria terminalis. J Cereb Blood Flow Metab 34:1128–1137. https://doi.org/10.1038/jcbfm.2014.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Windhorst U, Johansson H (1999) Modern Techniques in Neuroscience Research. Springer Berlin Heidelberg, Berlin, Heidelberg

    Book  Google Scholar 

  203. Kirkpatrick DC, Walton LR, Edwards MA, Wightman RM (2016) Quantitative analysis of iontophoretic drug delivery from micropipettes. Analyst 141:1930–1938. https://doi.org/10.1039/c5an02530c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kovács P, Dénes V, Kellényi L, Hernádi I (2005) Microiontophoresis electrode location by neurohistological marking: comparison of four native dyes applied from current balancing electrode channels. J Pharmacol Toxicol Methods 51:147–151. https://doi.org/10.1016/j.vascn.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  205. Herr NR, Daniel KB, Belle AM et al (2010) Probing presynaptic regulation of extracellular dopamine with iontophoresis. ACS Chem Neurosci 1:627–638. https://doi.org/10.1021/cn100056r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Purves RD (1979) The physics of iontophoretic pipettes. J Neurosci Methods 1:165–178. https://doi.org/10.1016/0165-0270(79)90014-1

    Article  CAS  PubMed  Google Scholar 

  207. Kasting GB (1992) Theoretical models for iontophoretic delivery. Adv Drug Deliv Rev 9:177–199. https://doi.org/10.1016/0169-409X(92)90023-J

    Article  CAS  Google Scholar 

  208. Dias EC, Segraves MA (1997) A pressure system for the microinjection of substances into the brain of awake monkeys. J Neurosci Methods 72:43–47. https://doi.org/10.1016/s0165-0270(96)00154-9

    Article  CAS  PubMed  Google Scholar 

  209. Woody CD, Bartfai T, Gruen E, Nairn AC (1986) Intracellular injection of cGMP-dependent protein kinase results in increased input resistance in neurons of the mammalian motor cortex. Brain Res 386:379–385. https://doi.org/10.1016/0006-8993(86)90175-7

    Article  CAS  PubMed  Google Scholar 

  210. Szente MB, Baranyi A, Woody CD (1990) Effects of protein kinase C inhibitor H-7 on membrane properties and synaptic responses of neocortical neurons of awake cats. Brain Res 506:281–286. https://doi.org/10.1016/0006-8993(90)91262-f

    Article  CAS  PubMed  Google Scholar 

  211. Shannon RV (1992) A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng 39:424–426. https://doi.org/10.1109/10.126616

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by TÜBİTAK Grant 117F481 within the European Union’s FLAG-ERA JTC 2017 project GRAFIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Güçlü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Öztürk, S., Devecioğlu, İ., Vardar, B., Duvan, F.T., Güçlü, B. (2023). Electrophysiological Techniques for Studying Tactile Perception in Rats. In: Holmes, N.P. (eds) Somatosensory Research Methods. Neuromethods, vol 196. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3068-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3068-6_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3067-9

  • Online ISBN: 978-1-0716-3068-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation