Cell Biology of Tactile Afferents

  • Chapter
  • First Online:
Affective Touch and the Neurophysiology of CT Afferents

Abstract

This chapter reviews our current understanding of the cellular and molecular basis of sensory transduction and neurotransmission in mammalian tactile afferents. Recent advances from in vitro studies and rodent models have provided important insights into the cell biology of tactile afferents. The chapter covers fundamental mechanisms of mechanotransduction in cells, how these mechanisms relate to C-tactile afferents, and mechanisms of neurotransmission in these neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banks RW et al (2013) Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles. J Physiol 591:2523–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumovsky PR (2013) VGLUTs in peripheral neurons and the spinal cord: time for a review. ISRN Neurol 2013:829753

    Article  PubMed  PubMed Central  Google Scholar 

  • Brumovsky P, Villar MJ, Hokfelt T (2006) Tyrosine hydroxylase is expressed in a subpopulation of small dorsal root ganglion neurons in the adult mouse. Expert Neurol 200:153–165

    Article  CAS  Google Scholar 

  • Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52

    Article  CAS  PubMed  Google Scholar 

  • Coste B et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delfini MC et al (2013) TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 5:378–388

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    Article  CAS  PubMed  Google Scholar 

  • Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094

    Article  CAS  PubMed  Google Scholar 

  • Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94:951–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trend Neurosci 27:98–103

    Article  CAS  PubMed  Google Scholar 

  • Harkany T et al (2004) Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J Neurosci 24:4978–4988

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chiang LY, Koch M, Lewin GR (2010) Evidence for a protein tether involved in somatic touch. EMBO 29:855–867

    Article  CAS  Google Scholar 

  • Ikeda R et al (2014) Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses. Cell 157:664–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawashima Y, Kurima K, Pan B, Griffith AJ, Holt JR (2015) Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch 467(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  CAS  PubMed  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    Article  CAS  PubMed  Google Scholar 

  • Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechner SG, Frenzel H, Wang R, Lewin GR (2009) Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO 28:1479–1491

    Article  CAS  Google Scholar 

  • Li L, Ginty DD (2014) The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles. Elife 3:e01901

    PubMed  PubMed Central  Google Scholar 

  • Li L et al (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q et al (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10:946–948

    Article  CAS  PubMed  Google Scholar 

  • Lou S, Duan B, Vong L, Lowell BB, Ma Q (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33:870–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumpkin EA, Marshall KL, Nelson AM (2010) The cell biology of touch. J Cell Biol 191:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimovic S et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Mol Biol 29:27–61, 101512-122340

    Article  CAS  Google Scholar 

  • McKemy DD (2013) The molecular and cellular basis of cold sensation. ACS Chem Neurosci 4:238–247

    Article  CAS  PubMed  Google Scholar 

  • Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo A (2010) The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 34:185–191

    Article  PubMed  Google Scholar 

  • Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520

    Article  PubMed  PubMed Central  Google Scholar 

  • Quick K et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open biol 2:120068

    Article  PubMed  PubMed Central  Google Scholar 

  • Seal RP et al (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462:651–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilceanu D, Stucky CL (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PloS one 5:e12177

    Article  PubMed  PubMed Central  Google Scholar 

  • Voglmaier SM et al (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51:71–84

    Article  CAS  PubMed  Google Scholar 

  • Volkers L, Mechioukhi Y, Coste B (2014) Piezo channels: from structure to function. Pflugers Arch 467(1):95–99

    Article  PubMed  Google Scholar 

  • Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston MC, Nehring RB, Wojcik SM, Rosenmund C (2011) Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron 69:1147–1159

    Article  CAS  PubMed  Google Scholar 

  • Wetzel C et al (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445:206–209

    Article  CAS  PubMed  Google Scholar 

  • Woo SH et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Research in the authors’ laboratories is supported by the National Institutes of Health (R01NS073119 and 5R21NS084191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen A. Lumpkin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seal, R.P., Lumpkin, E.A. (2016). Cell Biology of Tactile Afferents. In: Olausson, H., Wessberg, J., Morrison, I., McGlone, F. (eds) Affective Touch and the Neurophysiology of CT Afferents. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6418-5_3

Download citation

Publish with us

Policies and ethics

Navigation