Screening of Endophytes for Biocatalytic Tools

  • Protocol
  • First Online:
Endophytic Microbes: Isolation, Identification, and Bioactive Potentials

Abstract

Endophytic communities thrive in environments that are rich in biologically active compounds. To survive, endophytes have adapted to produce secondary metabolites mimicking their host plant and synthesize the required enzymes which are used for cell wall penetration and colonization of the host plant. Therefore, endophytic microorganisms could be a source of novel enzymes able to catalyze the organic transformation of a wide range of valuable fine chemicals derived from natural products.

This chapter presents various strategies to discover new biocatalyst within the endophytic community. The chemical entities naturally present in the plant suggest that the associated endophytes could be able to synthesize, metabolize, or modify a portion of the chemical structure. Enrichment and isolation in the presence of the metabolite of interest is a useful strategy to selectively isolate endophytes with the metabolic capacity to modify or degrade the compound. In addition, the use of different growing media, including one that mimics the internal environment of the plant, has also proven advantageous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rodríguez P, Barton M, Aldabalde V, Onetto S, Panizza P, Menéndez P, Rodríguez S (2007) Are endophytic microorganisms involved in the stereoselective reduction of ketones by Daucus carota root? J Mol Catal B Enzym 49:8–11

    Article  Google Scholar 

  2. Rodriguez P, Magallanes-Noguera C, Menéndez P, Orden AA, Gonzalez D, Kurina-Sanz M, Rodríguez S (2015) A study of Raphanus sativus and its endophytes as carbonyl group bioreducing agents. Biocatal Biotransformation 33:121–129

    Article  CAS  Google Scholar 

  3. Rodriguez P, Gonzalez D, Rodríguez Giordano S (2016) Endophytic microorganisms: a source of potentially useful biocatalysts. J Mol Catal B Enzym 133:S569–S581

    Article  Google Scholar 

  4. Yue Q, Bacon CW, Richardson MD (1998) Biotransformation of 2-benzoxazolinone and 6-methoxy-benzoxazolinone by Fusarium moniliforme. Phytochemistry 48:451–454

    Article  CAS  Google Scholar 

  5. Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  6. Zikmundová M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68:4863–4870

    Article  PubMed  PubMed Central  Google Scholar 

  7. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Society 67:491–502

    CAS  Google Scholar 

  8. Kusari P, Spiteller M, Kayser O, Kusari S (2014) Recent advances in research on Cannabis sativa L. endophytes and their prospect for the pharmaceutical industry. In: Microbial diversity and biotechnology in food security, Springer, New Delhi, pp 3–15

    Google Scholar 

  9. Preethi K, Manon Mani V, Lavanya N (2021) Endophytic fungi: a potential source of bioactive compounds for commercial and therapeutic applications in endophytes. Singapore, Springer, pp 247–272

    Book  Google Scholar 

  10. Mishra R, Kushveer JS, Revanthbabu P, Sarma VV (2019) Endophytic fungi and their enzymatic potential. In: Advances in endophytic fungal research, Springer, Cham, pp 283–337

    Google Scholar 

  11. Huang Q, An H, Song H, Mao H, Shen W, Dong J (2015) Diversity and biotransformative potential of endophytic fungi associated with the medicinal plant Kadsura angustifolia. Res Microbiol 166:45–55

    Article  PubMed  Google Scholar 

  12. Qin D, Wang L, Han M, Wang J, Song H, Yan X, Dong J (2018) Effects of an endophytic fungus Umbelopsis dimorpha on the secondary metabolites of host–plant Kadsura angustifolia. Front Microbiol 9:1–14

    Article  Google Scholar 

  13. Pedrini P, Giovannini PP, Mantovani M, Andreotti E, Colalongo C (2009) Reduction screening with endophytic fungi: synthesis of homochiral secondary alcohols. J Mol Catal B Enzym 60:45–150

    Article  Google Scholar 

  14. Marconi F, Umpiérrez ML, Gonzalez D, Giordano SR, Rodriguez P (2018) Endophytic biocatalysts with enoate reductase activity isolated from Mentha pulegium. World J Microbiol Biotechnol 34:50–60

    Article  PubMed  Google Scholar 

  15. Rodríguez P, Reyes B, Barton M, Coronel C, Menéndez P, Gonzalez D, Rodríguez S (2011) Stereoselective biotransformation of α-alkyl-β-keto esters by endophytic bacteria and yeast. J Mol Catal B Enzym 71:90–94

    Article  Google Scholar 

  16. Li H, Li Z, Ruan G, Yu Y, Liu X (2016) Asymmetric reduction of acetophenone into R-(+)-1-phenylethanol by endophytic fungus Neofusicoccum parvum BYEF07 isolated from Illicium verum. Biochem Biophys Res Commun 473:874–878

    Article  CAS  PubMed  Google Scholar 

  17. Werner C, Petrini O, Hesse M (2006) Degradation of the polyamine alkaloid aphelandrine by endophytic fungi isolated from Aphelandra tetragona. FEMS Microbiol Lett 155:147–153

    Article  Google Scholar 

  18. Mahboubi M, Haghi G (2008) Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J Ethnopharmacol 119:325–327

    Article  CAS  PubMed  Google Scholar 

  19. Marques NP, de Cassia PJ, Gomes E, da Silva R, Araújo AR, Ferreira H, Bocchini DA (2018) Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse. Ind Crop Prod 122:66–75

    Article  CAS  Google Scholar 

  20. Baldassarre F, Bertoni G, Chiappe C, Marioni F (2000) Preparative synthesis of chiral alcohols by enantioselective reduction with Daucus carota root as biocatalyst. J Mol Catal B Enzym 11:55–58

    Article  CAS  Google Scholar 

  21. Yadav JS, Nanda S, Thirupathi Reddy P, Bhaskar Rao A (2002) Efficient enantioselective reduction of ketones with Daucus carota root. J Org Chem 67:3900–3903

    Article  CAS  PubMed  Google Scholar 

  22. Aldabalde V, Arcia P, Gonzalez A, Gonzalez D (2007) Enzymatic synthesis of chiral heteroaryl alcohols using plant fragments as the only biocatalyst and reducing agent. Green Chem Let Rev 1:25–30

    Article  CAS  Google Scholar 

  23. Bruni R, Fantin G, Maietti S, Medici A, Pedrini P, Sacchetti G (2006) Plants-mediated reduction in the synthesis of homochiral secondary alcohols. Tetrahedron Asymmetry 17:2287–2291

    Article  CAS  Google Scholar 

  24. Bonnecarrere, PR (2013) Rol de endófitos en reacciones biocatalíticas mediadas por vegetales. Identificación y caracterización de nuevos biocatalizadores In: RIQUIM – Repositorio Institucional de la Facultad de Química – UdelaR, Montevideo

    Google Scholar 

  25. Orden AA, Bisogno FR, Giordano OS, Sanz MK (2008) Comparative study in the asymmetric bioreduction of ketones by plant organs and undifferentiated cells. J Mol Catal B Enzym 51:49–55

    Article  CAS  Google Scholar 

  26. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA-and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brenner DJ, Krieg NR, Staley JT, Garrity G (2005) The Proteobacteria. In: Bergey’s manual of systematic bacteriology, Springer, New York

    Google Scholar 

  28. Barrow GI, Feltham RKA (1993) Cowan and steel’s manual for the identification of medical bacteria

    Google Scholar 

  29. Menes RJ, Viera CE, Farí ME, Seufferheld MJ (2011) Halomonas vilamensis sp. nov., isolated from high-altitude Andean lakes. Int J Syst Evol Microbiol 61:1211–1217

    Article  CAS  PubMed  Google Scholar 

  30. Hugh R, Leifson E (1953) The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 66:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  Google Scholar 

  32. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  CAS  PubMed  Google Scholar 

  33. Pitt JI, Hocking AD (2009) Fungi and food spoilage, Boston

    Google Scholar 

  34. Decarlini MF, Aimar ML, Vázquez AM, Vero S, Rossi LI, Yang P (2017) Fungi isolated from food samples for an efficient stereoselective production of phenylethanols. Biocatal Agric Biotechnol 12:275–285

    Article  Google Scholar 

  35. Botto E, Gioia L, Menéndez MP, Rodríguez P (2019) Pseudozyma sp. isolation from Eucalyptus leaves and its hydrolytic activity over xylan. Biocatal Agric Biotechnol 21:101282

    Article  Google Scholar 

  36. Adney B, Baker J (1996) Measurement of cellulase activities: Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Rodríguez Bonnecarrere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gonzalez, D., Botto, E., Giordano, S.R., Rodríguez Bonnecarrere, P. (2023). Screening of Endophytes for Biocatalytic Tools. In: Sankaranarayanan, A., Amaresan, N., Dwivedi, M.K. (eds) Endophytic Microbes: Isolation, Identification, and Bioactive Potentials. Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2827-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2827-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2826-3

  • Online ISBN: 978-1-0716-2827-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation