Endophytic Fungi: A Potential Source of Bioactive Compounds for Commercial and Therapeutic Applications

  • Chapter
  • First Online:
Endophytes

Abstract

Endophyte biology is an emerging field. The backbone of the endophytes is plants. The microorganisms like bacteria and fungi live in the tissues, leaves and roots of plants for some reason like habitat, food and protection. The host plant may be or may not be affected, and sometimes they have symbiotic relationship also. The importance of studying the endophytes is their secondary metabolite production. The secondary metabolites have been isolated, and many studies have been carried out. These are biologically active compounds which include alkaloids, flavonoids, steroids and phenols. The endophytes not only produce secondary metabolites but also some useful and novel enzymes that are used in biotechnology field for various purposes like degradation, bio transforming organic compounds with many advantages over other methods and therapeutic applications. The secondary metabolites are used as anticancer, antimicrobial, antioxidant, anti-inflammatory, antidiabetic, antimalarial and as an immunosuppressive agent. Hence considering these important and wide range of applications, the endophytes may have an imperative position in the life of humans, plants and additionally for the environment in several ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad N, Hamayun M, Khan SA, Khan AL, Lee IJ, Shin DH (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20:1744–1749

    CAS  PubMed  Google Scholar 

  • Ali L, Khan AL, Hussain J, Harrasi AA, Waqas M, Kang SM, Rawahi AA, Lee IJ (2016) Sorokiniol: a new enzymes inhibitory metabolite from fungal endophyte Bipolaris sorokiniana LK12. BMC Microbiol 16:103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aly AH, Edrada-Ebel R, Wray V, Müller WE, Kozytska S, Hentschel U, Proksch P, Ebel R (2008) Bioactive metabolites from the endophytic fungus Ampelomyces sp. isolated from the medicinal plant Urospermumpicroides. Phytochemistry 69:1716–1725

    Article  CAS  PubMed  Google Scholar 

  • Amirita A, Sindhu P, Swetha J, Vasanthi NS, Kannan KP (2012) Enumeration of endophytic fungi from medicinal plants and screening of extracellular enzymes. World J Sci Technol 2:13–19

    CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Dekker Inc., New York

    Book  Google Scholar 

  • Barazani O, von Dahl CC, Baldwin IT (2007) Sebacinavermifera promotes the growth and fitness of Nicotianaattenuata by inhibiting ethylene signaling. Plant Physiol 144:1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barman D, Bhattacharjee K (2019) Endophytic bacteria associated with medicinal plants: the treasure trove of antimicrobial compounds. In: Egamberdieva D, Tiezzi A (eds) Medically important plant biomes: source of secondary metabolites, Microorganisms for sustainability, vol 15. Springer, Singapore

    Google Scholar 

  • Bezerra JD, Santos MG, Svedese VM, Lima DM, Fernandes MJ, Paiva LM, Souza-Motta CM (2012) Richness of endophytic fungi isolated from Opuntia ficus-indica Mill. (Cactaceae) and preliminary screening for enzyme production. World J Microbiol Biotechnol 28:1989–1995

    Article  CAS  PubMed  Google Scholar 

  • Bhagobaty RK, Joshi SR (2012) Enzymatic activity of fungi endophytic on five medicinal plant species of the pristine sacred forests of Meghalaya, India. Biotechnol Bioprocess Eng 17:33–40

    Article  CAS  Google Scholar 

  • Bissenger M, Sieber TN (1994) Assemblages of endophytic fungi in coppice shoots of Castaneasativa. Mycologia 86:648–655

    Article  Google Scholar 

  • Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y (2001) Multiplolides A and B, new antifungal 10-membered lactones from Xylaria Multiplex. J Nat Prod 64(7):965–967

    Article  CAS  PubMed  Google Scholar 

  • Borel JF, Kis ZL (1991) The discovery and development of cyclosporine. Transplant Proc 23:1867–1874

    CAS  PubMed  Google Scholar 

  • Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A (2017) Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu Rev Phytopathol 55:61–83

    Article  CAS  PubMed  Google Scholar 

  • Brady SF, Singh MP, Janso JE, Clardy J (2000) Cytoskyrins A and B, new BIA active bisanthraquinones isolated from an endophytic fungus. Org Lett 2:4047–4049

    Article  CAS  PubMed  Google Scholar 

  • Briskin DP (2000) Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Healt. Plant Physiol 124:507–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke RM, Cairney JWG (1997) Purification and characterization of a b-1,4-endoxylanase from the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 35:345–352

    Article  Google Scholar 

  • Cafeu MC, Silva GH, Teles HL et al (2005) Antifungal compounds of Xylaria sp. an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae). Quim Nova 28(6):991–995

    Article  CAS  Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 92:281–286

    Article  Google Scholar 

  • Castillo UF, Strobe GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148(9):2675–2685

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthi BVSK, Das P, Surendranath K, Karande AA, Jayabaskaran C (2008) Production of paclitaxel by Fusariumsolani isolated from Taxuscelebica. J Biosci 33:259–267

    Article  CAS  PubMed  Google Scholar 

  • Chen JX, Dai CC, Li X, Tian LS, **e H (2008) Endophytic fungi screening from Atractylancea and inoculating into the host plantlet. Guihaia 28:256–260

    CAS  Google Scholar 

  • Chen B, Wang M, Hu Y, Lin Z, Yu R, Huang L (2011) Preliminary study on promoting effects of endophytic fungi to growth of Rehmanniaglutinosa Chin. J Chin Mater Med 36:1137–1140

    Google Scholar 

  • Chinworrungsee M, Wiyakrutta S, Sriubolmas N, Chuailua P, Suksamrarn A (2008) Anticancer compounds derived from fungal endophytes: their importance and future challenges Arch. Pharm Res 31:611–616

    CAS  Google Scholar 

  • Choi YW, Hodgkiss IJ, Hyde KD (2005) Enzyme production by endophytes of Brucea javanica. J Agric Technol 1:55–66

    Google Scholar 

  • Chow Y, Ting AS (2015) Endophytic L-asparaginase producing fungi from plants associated with anticancer properties. JAR 6:869–876

    CAS  PubMed  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Annu Rev Ecol Evol Syst 21:275–295

    Article  Google Scholar 

  • Clay K, Cheplick GP (1989) Effect of ergot alkaloids from fungal endophyte-infected grasses on fall armyworm (Spodoptera frugiperda). J Chem Ecol 15:169–181

    Article  CAS  PubMed  Google Scholar 

  • Debbab A, Aly AH, Edrada-Ebel RA, Wray V, Müller WEG, Totzke F, Zirrgiebel U, Schächtele C, Kubbutat MHG, Lin WH, Mosaddak M, Hakiki A, Proksch P, Ebel R (2009) Bioactive metabolites from the endophytic fungus Stemphylium globuliferum isolated from Menthapulegium. J Nat Prod 72:626–631

    Article  CAS  PubMed  Google Scholar 

  • Demain AL (1999) Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol 52(4):455–463

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009a) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Chem Biodivers 6:784–789

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh SK, Mishra PD, Kulkarni-Almeida A et al (2009b) Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers 6:784–789

    Article  CAS  PubMed  Google Scholar 

  • Devi NN, Prabakaran JJ, Wahab F (2012) Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pac J Trop Biomed 2:S1280–S1284

    Article  Google Scholar 

  • Dhankhar S, Dhankhar S, Yadav JP (2013) Investigating antimicrobial properties of endophytic fungi associated with Salvadoraoleoides Decne. Anti-Infect Agents 11:48–58

    Article  CAS  Google Scholar 

  • Ding G, Song YC, Chen JR, Xu C, Ge HM, Wang XT, Tan RX (2006) Anticancer compounds derived from fungal endophytes: their importance and future challenges. J Nat Prod 69:302–304

    Article  CAS  PubMed  Google Scholar 

  • Ding G, Zheng Z, Liu S, Zhang H, Guo L, Che Y (2009) Anticancer compounds derived from fungal endophytes: their importance and future challenges. J Nat Prod 72:942–945

    Article  CAS  PubMed  Google Scholar 

  • Diogo HE, Sarpieri AN, Pires MC (2005) Fungi preservation in distilled water. An Bras Dermatol 80:591–594

    Article  Google Scholar 

  • Doehlemann G, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. In: The fungal kingdom. ASM Press, Washington, DC, pp 701–726

    Chapter  Google Scholar 

  • Dompeipen EJ, Srikandace Y, Suharso WP, Cahyana H, Simanjunta P (2011) Potential endophytic microbes selection for antidiabetic bioactive compounds production. Asian J Biochem 6(3):465–471

    Article  CAS  Google Scholar 

  • Ekpe IP, Yisa BN (2019) Effects of methanolic root extract of Holarrhena floribunda on liver enzymes and histopathology of the ovaries and testes tissues in Wistar rats. Asian J Res Rep Endocrinol 2:1–7

    Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Nonstreptomycete actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA (2004) Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785–793

    Article  CAS  PubMed  Google Scholar 

  • Firáková S, Å turdíková M, Múcková M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  CAS  Google Scholar 

  • Freeman EM (1904) The seed fungus of Lolium temulentum L. the darnel. Philos Trans R Soc Lond B 196:1–27

    Article  Google Scholar 

  • Freeman S, Rodriguez JR (1993) Genetic conversion of a fungal plant pathogen to a nonpathogenic, endophytic mutualist. Science 260:75–78

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Zhang X, Wang T, **ao J (2019) Quinolone hybrids and their anti-cancer activities: an overview. Eur J Med Chem 165:59–79

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3(3):240–254

    Article  Google Scholar 

  • Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Anticancer compounds derived from fungal endophytes: their importance and future challenges. J Nat Prod 72:753–775

    Article  CAS  PubMed  Google Scholar 

  • Gordaliza M, García PA, Miguel Del Corral JM et al (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44:441–459

    Article  CAS  PubMed  Google Scholar 

  • Govindappa M, Sadananda TS, ChannabasavaRamachandra YL, Chandrappa CP, Padmalatha RS, Prasad SK (2015) In vitro and in vivo antidiabetic activity of lectin (Nacetylgalactosamine,64 kDa) isolated from endophytic fungi, Alternaria species from Viscum album on alloxan induced diabetic rats. Integr Obesity Diabetes 1(1):11–19

    Google Scholar 

  • Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U et al (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 103(2):137–149

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44(2):136–142

    Article  CAS  Google Scholar 

  • Harnpicharnchai P, Champreda V, Sornlake W, Eurwilaichitr L (2009) A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr Purif 67:61–69

    Article  CAS  PubMed  Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA Jr, Tomer DP, Oneill KL, Heider EM, Grant DM (2003) Pestacin: a 1,3-dihydro isobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471

    Article  CAS  Google Scholar 

  • Hegde SV, Ramesha A, Srinvas C (2011) Optimization of amylase production from an endophytic fungi Discosia sp. isolated from Calophyllum inophyllum. Int J Agric Technol 7:805–813

    Google Scholar 

  • Hensens OD, Ondeyka JG, Dombrowski AW, Ostlind DA, Zink DL (1999) Isolation and structure of Nodulosporic acid A1 and A2, novel insecticides from a Nodulosporium sp. Tetrahedron Lett 40:5455–5458

    Article  CAS  Google Scholar 

  • Hoffman AM, Mayer SG, Strobel GA (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phomaspecies. Phytochemistry 69:1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Cai X, Shao C et al (2008) Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 69(7):1604–1608

    Article  CAS  PubMed  Google Scholar 

  • Indrianingsih AW, Tachibana S (2017) α-Glucosidase inhibitor produced by an endophytic fungus, Xylariaceae sp. QGS 01 from Quercus gilva Blume. Food Sci Human Wellness 6(2):88–95

    Article  Google Scholar 

  • Isaka M, Jaturapat A, Rukseree K et al (2001) Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J Nat Prod 64:1015–1018

    Article  CAS  PubMed  Google Scholar 

  • Kaufman PB, Cseke LJ, Warber S, Duke JA, Brielmann HL (1999) Natural Products from Plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Khan AL, Ali L, Hussain J, Rizvi TS, Al-Harrasi A, Lee IJ (2015) Enzyme inhibitory radicinol derivative from endophytic fungus Bipolaris sorokiniana LK12, associated with Rhazya stricta. Molecules 20(7):12198–12208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M, Asaf S, Elyassi A, Mabood F, Shin JH, Lee IJ (2016) Endophytic fungi from frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kharwar RN, Mishra A, Gond SK, Stierle A, Stierle D (2011) Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat Prod Rep 28(7):1208–1228

    Article  CAS  PubMed  Google Scholar 

  • Kogel KH, Franken P, Huckelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Koshino H, Yoshihara T, Sakamura S, Shimanuki T, Sato T, Tajimi A (1989) Novel C-11 epoxy fatty acid from stromata of Epichloe typhina on Phleum pretense. Agric Biol Chem 53:2527–2528

    CAS  Google Scholar 

  • Kusam LR, Divjot K, Imran S, Neelam Y, Ajar NY, Vinod K, Bhim PS, Harcharan SD, Anil KS (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications advances in endophytic fungal. In: Advances in endophytic fungal research. Springer, Cham, pp 105–144

    Google Scholar 

  • Kusari S, Lamshöft M, Zühlke S, Spiteller M (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71(2):159–162

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshoeft M, Spiteller M (2012) An endophytic fungus from Azadirachtaindica A Juss that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Lee JC (1995) Isolation and structure determination of bioactive compounds from endophytic and insect-associated fungi, PhD Thesis. Cornell University, New York, pp 9–51

    Google Scholar 

  • Lee J, Lobkovsky E, Pliam NB, Strobel GA, Clardy J (1995) Subglutinols A and B: immunosuppressive compounds from the andophytic fungus Fusarium subglutinols. J Org Chem 60:7076–7077

    Article  CAS  Google Scholar 

  • Leo VV, Passari AK, Joshi JB, Mishra VK, Uthandi S, Ramesh N, Gupta VK, Saikia R, Sonawane VC, Singh BP (2016) A novel triculture system (CC3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00447

  • Li JY, Strobel G, Harper J, Lobkovsky E, Clardy J (2000) Cryptocin, a potent tetramic acid antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Org Lett 2:767–770

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Harper JK, Grant DM (2001) Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from Pestalotiopsis spp. and Monochaetia sp. Phytochemistry 56:463–468

    Article  CAS  PubMed  Google Scholar 

  • Li C, Johnson RP, Porco JA (2003) Total synthesis of the quinone epoxide dimer (+)-torreyanic acid: application of a biomimetic oxidation/electrocyclization/diels–alder dimerization cascade1. J Am Chem Soc 125(17):5095–5106

    Article  CAS  PubMed  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A-C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16(17):7894–7899

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem 105:548–554

    Article  CAS  Google Scholar 

  • Lu H, Xou WX, Meng JC, Hu J, Tan RX (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Lupo S, Tiscornia S, Bettucci L (2001) Endophytic fungi from flowers, capsules and seeds of Eucalyptus globules. Rev Iberoam Micol 18:38–41

    CAS  PubMed  Google Scholar 

  • Mani VM, Soundari APG, Karthiyaini D, Preethi K (2015) Bioprospecting for endophytic fungi and their metabolites from medicinal tree Aegle marmelos in Western Ghats India. Mycobiology 43(3):303–310

    Article  PubMed  PubMed Central  Google Scholar 

  • Mani VM, Soundari APG, Preethi K (2018a) Enzymatic and phytochemical analysis of endophytic fungi on Aegle marmelos from Western Ghats of Tamil Nadu, India. Int J Life Sci Pharm Res 8(1):L1–L8

    Article  CAS  Google Scholar 

  • Mani VM, Soundari APG, Tamilarasi S (2018b) Determination of in vitro cytotoxicity and anti-angiogenesis for a bioactive compound from Aspergillus terrus FC36AY1 isolated from Aegle marmelos around Western Ghats, India. In: Medicinal chemistry. InTech Open, London, pp 13–28

    Google Scholar 

  • Marinho AMR, Rodrigues-Filho E, Moitinho MDLR, Santos LS (2005) Biologically active polyketides produced by Penicillium janthinellum isolated as an endophytic fungus from fruits of Melia azedarach. J Braz Chem Soc 16(2):280–283

    Article  Google Scholar 

  • Marlida Y, Delfita R, Gusmanizar N, Ciptaan G (2010) Isolation, characterization and production of phytase from endophytic fungus its application for feed. Pak J Nutr 9:471–474

    Article  CAS  Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:442

    Article  Google Scholar 

  • Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, anti-inflammatory depsipeptides from a marine Streptomycete. J Org Chem 64(4):1145–1150

    Article  CAS  Google Scholar 

  • Müller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456

    Article  PubMed  CAS  Google Scholar 

  • Ng’ang’a MP, Kahangi EM, Onguso JM, Losenge T, Mwaura P (2011) Analyses of extra-cellular enzymes production by endophytic fungi isolated from bananas in Kenya. Afr J Hortic Sci 5:1–8

    Google Scholar 

  • Nisa H, Kamili AN (2019) Fungal endophytes from medicinal plants as a potential source of bioactive secondary metabolites and volatile organic compunds: an overview. Springer Nature, Cham

    Google Scholar 

  • Oliveira ALM, Urquiaga S, Baldani JI (2003) Processos e mecanismos envolvidos na influência de microrganismos sobre o crescimento vegetal. Embrapa Agrobiologia, Documentos, p 161

    Google Scholar 

  • Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A et al (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulosporium sp. isolation, structure determination, and chemical transformation. J Am Chem Soc 119:8809–8816

    Article  CAS  Google Scholar 

  • Park JH, Choi GJ, Lee HB et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15(1):112–111

    CAS  Google Scholar 

  • Pereira JO, Azevedo JL, Petrini O (1993) Endophytic fungi of Stylosanthes: a first report. Mycologia 85:362–364

    Article  Google Scholar 

  • Perez Gutierrez RM, Neira Gonzalea A (2018) Antidiabetic and antioxidant activities of bioactive compounds from endophytes. Springer Nature, Cham

    Book  Google Scholar 

  • Petrini O, Andrews JH, Hirano SS (1991) Fungal endophytes of tree leaves. In: Microbial ecology of the leaves. Springer-Verlag, NewYork, pp 179–197

    Chapter  Google Scholar 

  • Pongcharoen W, Rukachaisirikul V, Phongpaichit S et al (2008) Metabolites from the endophytic fungus Xylaria sp. PSU-D14. Phytochemistry 69(9):1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Promputtha I, Jeewon R, Lumyong S et al (2007) Phylogenetic evaluation of whether endophytes become saprotrops at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • Pujiyanto S, Lestari Y, Suwanto A, Budiarti S, Darusma LK (2012) Alpha-glucosidase inhibitor activity and characterization of endophytic actinomycetes isolated from some Indonesian diabetic medicinal plants. Int J Pharm Pharm Sci 4(1):327–333

    Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytesfoetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Qin JC, Zhang YM, Gao JM et al (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19(6):1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rabha AJ, Naglot A, Sharma GD, Gogoi HK, Veer V (2014) In vitro evaluation of antagonism of endophytic Colletotrichum gloeosporioides against potent fungal pathogens of Camellia sinensis. Indian J Microbiol 54:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal R, Suryanarayanan TS (2000) Isolation of endophytic fungi from leaves of neem (Azadirachta indica). Curr Sci 78:1375–1378

    Google Scholar 

  • Ren Y, Strobel GA, Graff JC, Jutila M, Park SG, Gosh S et al (2008) Colutellin A, an immunosuppressive peptide from Colletotrichum dematium. Microbiology 154:1973–1979

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Redman RS (1997) Fungal life-styles and ecosystem dynamics: biological aspects of plant pathogens, plant endophytes and saprophytes. Adv Bot Res 24:169–193

    Article  Google Scholar 

  • Rowan DD, Gaynor DL (1986) Isolation of feeding deterrents against argentine stem weevil from ryegrass infected with the endophyte Acremonium loliae. J Chem Ecol 12:647–658

    Article  CAS  PubMed  Google Scholar 

  • Rukachaisirikul V, Sommart U, Phongpaichit S, Sakayaroj J, Kirtikara K (2008) Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69(3):783–787

    Article  CAS  PubMed  Google Scholar 

  • Sáenz-de-Santamaría M, Guisantes JA, Martínez J (2016) Enzymatic activities of Alternaria alternata allergenic extracts and its major allergen (Alt a 1). Mycoses 49:288–292

    Article  Google Scholar 

  • Saikkonen K, Wäli PR, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Phillips TD (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81:430–438

    Article  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686

    Article  PubMed  Google Scholar 

  • Schulz B, Sucker J, Aust HJ et al (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99(8):1007–1015

    Article  CAS  Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6(2):210

    Article  PubMed  PubMed Central  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Sikora RA, Schäfer BK, Dababat AA (2007) Modes of action associated with microbially induced in planta suppression of plant-parasitic nematodes. J Australas Plant Pathol 36:124–134

    Article  Google Scholar 

  • Song YC, Li H, Ye YH, Shan CY, Yang YM, Tan RX (2004) Endophytic naphthopyrone metabolites are co-inhibitors of xanthine oxidase, SW1116 cell and some microbial growths. FEMS Microbiol Lett 241:67–72

    Article  CAS  PubMed  Google Scholar 

  • Sorgatto M, Guimarães NCA, Zanoelo FF, Marques MR, Peixoto-Nogueira SC, Giannesi GG (2012) Purification and characterization of an extracellular xylanase produced by the endophytic fungus, Aspergillus terreus, grown in submerged fermentation. Afr J Biotechnol 11:8076–8084

    Article  CAS  Google Scholar 

  • Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomycesandreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, Inc., New York, NY, pp 3–29

    Google Scholar 

  • Strobel GA (2002) Mirobial gift from rain forests. Can J Plant Pathol 24:14–20

    Article  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microbes Infect 5(6):535–544

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic, microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Ran X, Wang J (2008) Isolation and identification of a taxol-producing endophytic fungus from Podocrapus. Acta Microbiol Sin 48:589–595

    CAS  Google Scholar 

  • Sunitha VH, Ramesha A, Savitha J, Srinivas C (2012) Amylase production by endophytic fungi Cylindrocephalum sp. Isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunitha VH, Nirmala Devi D, Srinivas C (2013) Extracellular enzymatic activity of endophytic fungal strains isolated from medicinal plants. World J Agric Sci 9(1):1–9

    CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18(4):448–459

    Article  CAS  PubMed  Google Scholar 

  • Tang MJ, Meng ZX, Guo SX, Chen XM, **ao PG (2008) Effects of endophytic fungi on the culture and four enzyme activities of Anoectochilus roxburghii. Chin Pharm J 43:890–893

    CAS  Google Scholar 

  • Thakur A, Sharma V, Thakur A (2019) An overview of anti-nutritional factors in food. IJCS 7(1):2472–2479

    CAS  Google Scholar 

  • Tyler VE (1999) Phytomedicines: back to the future. J Nat Prod 62:1589–1592

    Article  CAS  PubMed  Google Scholar 

  • Uma SR, Ramesha BT, Ravikanth G, Rajesh PG et al (2008) Chemical profiling of N. nimmoniana for camptothecin, an important anticancer alkaloid: towards the development of a sustainable production system. In: Ramawat KG, Merillion J (eds) Bioactive molecules and medicinal plants. Springer, Berlin, pp 198–210

    Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Verekar SA, Mishra PD, Sreekumar ES, Deshmukh SK, Fiebig H-H, Kelter G, Maier A (2014) Anticancer activity of new depsipeptide compound isolated from an endophytic fungus. J Antibiot 67:697–701

    Article  CAS  Google Scholar 

  • Wagenaar MM, Clardy J (2001) Anticancer compounds derived from fungal endophytes: their importance and future challenges. J Nat Prod 64:1006–1009

    Article  CAS  PubMed  Google Scholar 

  • Wall ME, Wani MC, Cook CE et al (1966) Plant antitumor agents I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88:3888–3890

    Article  CAS  Google Scholar 

  • Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Anticancer compounds derived from fungal endophytes: their importance and future challenges. FEMS Immunol Med Microbiol 34:51–57

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li XM, Teuscher F, Li D, Diesel A, Ebel R, Proksch P, Wang BG (2006) Anticancer compounds derived from fungal endophytes: their importance and future challenges. J Nat Prod 69:1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Wang FW, Jiao RH, Cheng AB, Tan SH, Song YC (2007a) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23(1):79–83

    Article  CAS  Google Scholar 

  • Wang X, Morris-Natschke SL, Lee KH (2007b) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27:133–148

    Article  PubMed  CAS  Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei DL, Chang SC, Wei YH, Lin YW, Chuang CL, Jong SC (1992) Production of cellulolytic enzymes from the Xylaria and Hypoxylon species of xylariaceae. World J Microbiol Biotechnol 8:141–146

    Article  CAS  PubMed  Google Scholar 

  • Wipusaree N, Sihanonth P, Piapukiew J, Sangvanich P, Karnchanatat A (2011) Purification and characterization of a xylanase from the endophytic fungus Alternaria alternata isolated from the Thai medicinal plant, Croton oblongifolius roxb. Afr J Microbiol 5:5697–5712

    CAS  Google Scholar 

  • **ong XQ, Liao HD, Ma JS, Liu XM, Zhang LY, Shi XW (2013) Isolation of a rice endophytic bacterium, Pantoea sp. Sd-1, with ligninolytic activity and characterization of its rice straw degradation ability. Lett Appl Microbiol 58:123–129

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Zhang L, Guo B, Guo S (2004) Preliminary study of a vincristine-producing endophytic fungus isolated from leaves of Catharanthusroseus. Chin Tradit Herb Drug 35:79–81

    CAS  Google Scholar 

  • Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165(6):437–449

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Tao LY, Liang YJ (2009) Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G1 with involvement of GSK-3β/β-catenin/c-Myc pathway. Cell Cycle 8:2444–2450

    Article  CAS  PubMed  Google Scholar 

  • Zhang JY, Tao LY, Liang YJ, Chen LM, Mi YJ, Zheng LS (2010) Anthracenedione derivatives as anticancer agents isolated from secondary metabolites of the mangrove endophytic fungi. Mar Drugs 8:1469–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Sun S, Zhu T, Lin Z, Gu J, Li D (2011) Antiviral isoindolone derivatives from an endophytic fungus Emericella sp. associated with Aegiceras corniculatum. Phytochemistry 72(11–12):1436–1442

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Preethi, K., Manon Mani, V., Lavanya, N. (2021). Endophytic Fungi: A Potential Source of Bioactive Compounds for Commercial and Therapeutic Applications. In: Patil, R.H., Maheshwari, V.L. (eds) Endophytes. Springer, Singapore. https://doi.org/10.1007/978-981-15-9371-0_12

Download citation

Publish with us

Policies and ethics

Navigation