Isolation of Genes Encoding Carbon Metabolism Pathways from Complex Microbial Communities

  • Protocol
  • First Online:
Metagenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2555))

Abstract

The ability to produce high-value products using bacteria will increasingly rely on continued research to make large-scale bacterial fermentation cost-efficient. Engineering bacteria to use alternate carbon sources as feedstock provides an opportunity to reduce production costs. Using inexpensive carbon sources from various forms of waste provides an opportunity to substantially reduce feedstock costs. Functional carbon metabolism pathways can be identified by the introduction of metagenomic libraries into the organism of interest followed by screening for the desired phenotype. We present here a method to transfer metagenomic libraries from E. coli to Pseudomonas alloputida, followed by screening for use of galactose as a sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 165.84
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 235.39
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng J, Pinnell L, Engel K et al (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. https://doi.org/10.1016/j.mimet.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  2. Lam KN, Cheng J, Engel K et al (2015) Current and future resources for functional metagenomics. Front Microbiol 6:1196. https://doi.org/10.3389/fmicb.2015.01196

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cheng J, Romantsov T, Engel K et al (2017) Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences. PLoS One 12:e0172545. https://doi.org/10.1371/journal.pone.0172545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheng J, Charles TC (2016) Novel polyhydroxyalkanoate copolymers produced in Pseudomonas putida by metagenomic polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 100:7611–7627. https://doi.org/10.1007/s00253-016-7666-6

    Article  CAS  PubMed  Google Scholar 

  5. Cheng J, Nordeste R, Trainer MA, Charles TC (2017) Methods for the isolation of genes encoding novel PHA metabolism enzymes from complex microbial communities. In: Streit W, Daniel R (eds) Metagenomics. Methods in molecular biology, vol 1539. Humana Press, New York, pp 237–248. https://doi.org/10.1007/978-1-4939-6691-2_15

    Chapter  Google Scholar 

  6. Nikel PI, Lorenzo V de (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab Eng 50:142–155. https://doi.org/10.1016/j.ymben.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  7. Martínez-García E, Nikel PI, Aparicio T, Lorenzo V de (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories 13:1–15. https://doi.org/10.1186/s12934-014-0159-3

    Article  CAS  Google Scholar 

  8. Tsang YF, Kumar V, Samadar P et al (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644. https://doi.org/10.1016/j.envint.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  9. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  10. Escapa IF, Morales V, Martino VP et al (2011) Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598. https://doi.org/10.1007/s00253-011-3099-4

    Article  CAS  PubMed  Google Scholar 

  11. Jones JDG, Gutterson N (1987) An efficient mobilizable cosmid vector, pRK 7813, and its use in a rapid method for marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61:299–306. https://doi.org/10.1016/0378-1119(87)90193-4

    Article  CAS  PubMed  Google Scholar 

  12. Finan TM, Kunkel B, Vos GFD, Signer ER (1986) Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72. https://doi.org/10.1128/jb.167.1.66-72.1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Okonechnikov K, Golosova O, Fursov M, team U (2012) Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. https://doi.org/10.1093/bioinformatics/bts091

    Article  CAS  PubMed  Google Scholar 

  14. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinform Oxf Engl 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  Google Scholar 

  15. Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kovach ME, Elzer PH, Hill DS et al (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176. https://doi.org/10.1016/0378-1119(95)00584-1

    Article  CAS  PubMed  Google Scholar 

  17. Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 204:45–48. https://doi.org/10.1111/j.1574-6968.2001.tb10860.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor C. Charles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thakor, A., Cheng, J., Charles, T.C. (2023). Isolation of Genes Encoding Carbon Metabolism Pathways from Complex Microbial Communities. In: Streit, W.R., Daniel, R. (eds) Metagenomics. Methods in Molecular Biology, vol 2555. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2795-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2795-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2794-5

  • Online ISBN: 978-1-0716-2795-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation