Salamanders as Key Models for Development and Regeneration Research

  • Protocol
  • First Online:
Salamanders

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2562))

Abstract

For 70 years from the very beginning of developmental biology, the salamander embryo was the pre-eminent model for these studies. Here I review the major discoveries that were made using salamander embryos including regionalization of the mesoderm; patterning of the neural plate; limb development, with the pinnacle being Spemann’s Nobel Prize for the discovery of the organizer; and the phenomenon of induction. Salamanders have also been the major organism for elucidating discoveries in organ regeneration, and these are described here too beginning with Spallanzani’s experiments in 1768. These include the neurotrophic hypothesis of regeneration, studies of aneurogenic limbs, the concept of dedifferentiation and transdifferentiation, and advances in understanding pattern formation via molecules located on the cell surface. Also described is the prodigious power of brain and spinal cord regeneration and discoveries from lens regeneration, all of which reveal how important salamanders have been as research models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dinsmore CE (1991) A history of regeneration research: milestones in the evolution of a science. Cambridge University Press

    Google Scholar 

  2. Todd TJ (1823) On the process of reproduction of the members of the aquatic salamander. Q J Lit Sci Arts 16:84–96

    Google Scholar 

  3. Willier BH, Oppenheimer JM (1964) Foundations of experimental embryology. Prentice-Hall Inc., Englewood Cliffs

    Google Scholar 

  4. Hamburger V (1988) The heritage of experimental embryology. Hans Spemann and the organizer. Oxford University Press, Oxford

    Google Scholar 

  5. Clarke SF (1878) The development of Amblystoma punctatum – Baird. Part 1, External Biol Studies, vol 1. Johns Hopkins University

    Google Scholar 

  6. Fassler PE (1996) Hans Spemann (1869-1941) and the Freiburg school of embryology. Int J Dev Biol 40:49–57

    PubMed  CAS  Google Scholar 

  7. Lewis WH (1910) The relation of the myotomes to the ventrolateral musculature and to the anterior limbs in Amblystoma. Anat Rec 4(5):183

    Article  Google Scholar 

  8. Fassler PE, Sander K (1977) Hilde Mangold (1898–1924) and Spemann’s organizer: achievement and tragedy. In: Landmarks in developmental biology 1883–1924. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  9. Lewis WH (1907) Transplantation of the lips of the blastopore in Rana palustris. Am J Anat 7:137–143

    Article  Google Scholar 

  10. Harrison RG (1921) On relations of symmetry in transplanted limbs. J Exp Zool 32:1–136

    Article  Google Scholar 

  11. Byrnes EF (1898) Experimental studies on the development of limb-muscles in Amphibia. J Morphol 24:105–140

    Article  Google Scholar 

  12. Harrison RG (1918) Experiments on the development of the fore limb of Amblystoma, a self-differentiating equipotential system. J Exp Zool 25:413–461

    Article  Google Scholar 

  13. Toivonen S, Saxen L (1955) The simultaneous inducing action of liver and bone-marrow of the guinea pig in implantation and explantation experiments with embryos of Triturus. Exp Cell Res Suppl 3:346–357

    Google Scholar 

  14. Grunz H (2001) Developmental biology of amphibians after Hans Spemann in Germany. Int J Dev Biol 45:39–50

    PubMed  CAS  Google Scholar 

  15. Nieuwkoop PD, Nigtevecht GV (1952) Neural activation and transformation in explants of competent ectoderm under the influence of fragments of anterior notochord in urodeles. J Embryol Exp Morphol 2:175–193

    Google Scholar 

  16. Gurdon JB, Hopwood N (2000) The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int J Dev Biol 44:43–50

    PubMed  CAS  Google Scholar 

  17. Slack JMW (1976) Determination of polarity in the amphibian limb. Nature 261:44–46

    Article  PubMed  CAS  Google Scholar 

  18. Slack JMW (1977) Control of anteroposterior pattern in the axolotl forelimb by a smoothly graded signal. J Embryol Exp Morphol 39:1690182

    Google Scholar 

  19. Purushothaman S, Elewa A, Seifert AW (2019) Fgf-signaling is compartmentalized within the mesenchyme and controls proliferation during salamander limb development. eLife 8:e48507. https://doi.org/10.7554/eLife.48507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Sobokow L, Epperlein H-H, Herklotz S, Straube WL, Tanaka EM (2006) A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290:386–397

    Article  Google Scholar 

  21. Lopez D, Monaghan JR, Cogle CR, Bova FJ, Maden M, Scott EW (2014) Map** hematopoiesis in a fully regenerative vertebrate: the axolotl. Blood 124:1232–1241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nowoshilow S et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55

    Article  PubMed  CAS  Google Scholar 

  23. Fei JF et al (2014) CRISPR-mediated genomic deletion of Sox2 in the axolotl shows a requirement in spinal cord neural stem cell amplification during tail regeneration. Stem Cell Rep 3:444–459

    Article  CAS  Google Scholar 

  24. Flowers GP, Timberlake AT, Mclean KC, Monaghan JR, Crews CM (2014) Highly efficient targeted mutagenesis in axolotl using Cas9 RNA-guided nuclease. Development 141:2165–2171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Philippeaux JM (1867) On the regeneration of the limbs in the Axolotl (Siren pisciformis). Ann Mag Nat Hist 20(116):149–149

    Google Scholar 

  26. Wallace H (1981) Vertebrate Limb Regeneration. Wiley & Sons, Hoboken

    Google Scholar 

  27. Singer M (1942) The nervous system and regeneration of the forelimb of adult Triturus. I. The role of the sympathetics. J Exp Zool 90:377–399

    Article  Google Scholar 

  28. Singer M (1954) Induction of regeneration of the forelimb of the postmetamorphic frog by augmentation of the nerve supply. J Exp Zool 126:419–471

    Article  Google Scholar 

  29. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318:772–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Farkas JE, Freitas PD, Bryant DM, Whited JL, Monaghan JR (2016) Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development 143:2724–2731

    PubMed  CAS  Google Scholar 

  31. Yntema CL (1959) Regeneration of sparsely innervated and aneurogenic forelimbs of Amblystoma larvae. J Exp Zool 140:101–123

    Article  PubMed  CAS  Google Scholar 

  32. Popiela H (1967) In vivo limb tissue development in the absence of nerves: a quantitative study. Exp Neurol 53:214–226

    Article  Google Scholar 

  33. Thortnon CS, Thornton MT (1970) Recuperation of regeneration in denervated limbs of Ambystoma larvae. J Exp Zool 173:293–302

    Article  Google Scholar 

  34. Steen TP, Thornton CS (1963) Tissues interaction in amputated aneurogenic limbs of Ambystoma larvae. J Exp Zool 154:207–221

    Article  PubMed  CAS  Google Scholar 

  35. Kumar A et al (2011) The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration. PNAS USA 108:13588–13593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Scheremetieva EA, Brunst VV (1938) Preservation of the regeneration capacity in the middle part of the limb of newt and its simultaneous loss in the distal and proximal part of the same limb. Bull Biol Med Exp URSS 6:723–724

    Google Scholar 

  37. Butler EG, O’Brien JP (1942) Effects of localized X-irradiation in regeneration of the urodele limb. Anat Rec 84:407–413

    Article  Google Scholar 

  38. Chalkley DT (1954) A quantitative histological analysis of forelimb regeneration in Triturus viridescens. J Morphol 94:21–70

    Article  Google Scholar 

  39. Tanaka HV, Ng NY, Yu ZY, Casco-Robles MM, Maruo F, Tsonis PA, Chiba C (2016) A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts. Nat Commun 7:11069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Namenwirth M (1974) The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol 41:42–56

    Article  PubMed  CAS  Google Scholar 

  41. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperling HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    Article  PubMed  CAS  Google Scholar 

  42. Crawford K, Stocum DL (1988) Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs. Development 102:687–698

    Article  PubMed  CAS  Google Scholar 

  43. Nardi JB, Stocum DL (1984) Surface properties of regenerating limb cells: evidence for gradation along the proximodistal axis. Differentiation 25:27–31

    Article  Google Scholar 

  44. Maden M (1982) Vitamin a and pattern formation in the regenerating limb. Nature 295:672–675

    Article  PubMed  CAS  Google Scholar 

  45. da Silva SM, Gates PB, Brockes JP (2002) The newt orthologue of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3:547–555

    Article  PubMed  Google Scholar 

  46. Echeverri K, Tanaka EM (2004) Proximodistal patterning during limb regeneration. Dev Biol 279:391–401

    Article  Google Scholar 

  47. Oliveira CR, Knapp D, Elewa A, Malagon SGG, Gates PB, Petzhold A, Arce H, Cordoba RC, Chara O, Tanaka EM, Simon A, Yun MH (2021) Tig1 regulates proximo-distal identity during salamander limb regeneration. bioRxiv. https://doi.org/10.1101/2021.02.03.42834

  48. Bateson W (1894) Material for the study of variation. Reprinted 1992. Johns Hopkins University Press, Baltimore

    Google Scholar 

  49. Maden M (1980) Structure of supernumerary limbs. Nature 286:803–805

    Article  Google Scholar 

  50. French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981

    Article  PubMed  CAS  Google Scholar 

  51. Kirsche W (1983) The significance of matrix zones for brain regeneration and brain transplantation with special consideration of lower vertebrates. In: Wallace R, Das GD (eds) Neural tissue transplantation research. Springer, New York, pp 65–104

    Chapter  Google Scholar 

  52. Maden M, Manwell LA, Ormerod BK (2013) Proliferation zones in the axolotl brain and regeneration of the telencephalon. Neural Dev 8:1

    Article  PubMed  PubMed Central  Google Scholar 

  53. Amamoto R, Lopex Huerta VG, Takahashi E, Dai G, Grant AK, Fu Z, Arlotta P (2016) Adult axolotls can regenerate original neuronal diversity in response to brain injury. elife 5:e13998

    Article  PubMed  PubMed Central  Google Scholar 

  54. Okamoto M, Ohsawa H, Hayashi T, Owaribe K, Tsonis PA (2007) Regeneration of retinotectal projections after optic tectum removal in adult newts. Mol Vis 13:2112–2118

    PubMed  Google Scholar 

  55. Parish CL, Beljajeva A, Arenas E, Simon A (2007) Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 134:2882–2887

    Article  Google Scholar 

  56. Tsonis PA, Mahadavan M, Tancous EE, Del Rio-Tsonis K (2004) A newt’s eye view of lens regeneration. Int J Dev Biol 48:975–980

    Article  PubMed  Google Scholar 

  57. Stone LS (1967) An investigation recording all salamanders which can and cannot regenerate a lens from the dorsal iris. J Exp Zool 164:87–103

    Article  PubMed  CAS  Google Scholar 

  58. Suetsugu-Maki R, Maki N, Nakamura K, Sumanas S, Zhu J, Del Rio-Tsonis K, Tsonis PA (2012) Lens regeneration in axolotl: new evidence of developmental plasticity. BMC Biol 10:103

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eguchi G (1988) Cellular and molecular background of Wolffian lens regeneration. In: Eguchi G, Okada TS, Saxen L (eds) Regulatory mechanisms in developmental processes. Elsevier, Limerick, pp 147–158

    Google Scholar 

  60. Grogg MW, Call MK, Okamoto M, Vergara MN, Del Rio-Tsonis K, Tsonis PA (2005) BMP inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 438:858–862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Eguchi G, Eguchi Y, Nakamura K, Yadav MC, Millan JL, Tsonis PA (2011) Regenerative capacity in newts is not altered by repeated regeneration and ageing. Nat Commun 2:384

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm Maden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maden, M. (2023). Salamanders as Key Models for Development and Regeneration Research. In: Seifert, A.W., Currie, J.D. (eds) Salamanders. Methods in Molecular Biology, vol 2562. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2659-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2659-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2658-0

  • Online ISBN: 978-1-0716-2659-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation