Basics of Self-Regeneration

  • Reference work entry
  • First Online:
Cell Engineering and Regeneration

Abstract

Regeneration is a fascinating phenomenon spanning several levels of complexity, allowing organisms to repair, renew, and reconstitute missing or damaged parts. Despite significant efforts to understand regeneration, the lack of adequate technology has slowed advances in the field until very recently. Since the beginning of the eighteenth century, scientists have looked toward animal models while striving to dissect the cellular and molecular pathways that drive regeneration. Although we are still far from the day that humans could regenerate an appendage, several mechanisms used by other animal species have been uncovered. This knowledge brings us closer to their potential transfer to humans, enabling the repair of specific tissues.

Even though regeneration occurs in many organisms, the extent of this trait varies enormously: planarian worms can regenerate their whole body and are even able to create two new worms from a bisected individual, whereas mammals can only regenerate specific parts of an organ or tissue, such as the very distal tip of a digit. Among vertebrates, however, salamanders are able to regenerate complex structures such limbs or tails, making them the object of intense scientific research. This chapter addresses limb regeneration using one specific species of salamander – the axolotl – as an example of a complex structure that is re-formed from cells of different embryonic origins. It also discusses the advances in technology that allow the pursuit and answering of important questions within this topic, and includes a brief look into the future and what remains to be explored in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 641.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 748.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al Haj Baddar NW, Chithrala A, Voss SR (2019) Amputation-induced reactive oxygen species signaling is required for axolotl tail regeneration. Dev Dyn 248:189–196

    Article  PubMed  CAS  Google Scholar 

  • Albert P, Boilly B, Courty J, Barritault D (1987) Stimulation in cell culture of mesenchymal cells of newt limb blastemas by EDGF I or II (basic or acidic FGF). Cell Differ 21:63–68

    Article  CAS  PubMed  Google Scholar 

  • Anchelin M, Murcia L, Alcaraz-Perez F, Garcia-Navarro EM, Cayuela ML (2011) Behaviour of telomere and telomerase during aging and regeneration in zebrafish. PLoS One 6(2):e16955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athippozhy A, Lehrberg J, Monaghan JR, Gardiner DM, Voss SR (2014) Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs. Regeneration 1:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aztekin C, Hiscock TW, Marioni JC, Gurdon JB, Simons BD, Jullien J (2019) Identification of a regeneration-organizing cell in the Xenopus tail. Science 364:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baguñà J (2012) The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol 56:19–37

    Article  PubMed  CAS  Google Scholar 

  • Bartra R, Viñas GV (2011) Axolotiada. Fondo de Cultura Economica USA

    Google Scholar 

  • Becker CG, Becker T (2008) Adult zebrafish as a model for successful central nervous system regeneration. Restor Neurol Neurosci 26:71–80

    PubMed  Google Scholar 

  • Berberoglu MA, Gallagher TL, Morrow ZT, Talbot JC, Hromowyk KJ, Tenente IM, Langenau DM, Amacher SL (2017) Satellite-like cells contribute to pax7-dependent skeletal muscle repair in adult zebrafish. Dev Biol 424:162–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandon RA (1972) Hybridization between the Mexican Salamanders Ambystoma dumerilii and Ambystoma mexicanum under laboratory conditions. Herpetologica 28:199–207

    Google Scholar 

  • Braun E, Keren K (2018) HydraRegeneration: closing the loop with mechanical processes in morphogenesis. BioEssays 40:1700204–1700212

    Article  Google Scholar 

  • Brockes JP (2015) Variation in salamanders: an essay on genomes, development, and evolution. In: Kumar A, Simon A (eds) Salamanders in regeneration research: methods and protocols. Springer New York, New York, pp 3–15

    Google Scholar 

  • Brunauer R, Muneoka K (2018) The impact of aging on mechanisms of mammalian epimorphic regeneration. Gerontology 64(3):300–308, 1–9

    Article  CAS  PubMed  Google Scholar 

  • Bryant SV, Gardiner DM (2002) Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol 46(7):887–896, 1–10

    PubMed  Google Scholar 

  • Bryant DM, Sousounis K, Payzin-Dogru D, Bryant S, Sandoval AGW, Martinez Fernandez J, Mariano R, Oshiro R, Wong AY, Leigh ND et al (2017a) Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. NPJ Regen Med 2:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Bryant DM, Johnson K, DiTommaso T, Tickle T, Couger MB, Payzin-Dogru D, Lee TJ, Leigh ND, Kuo TH, Davis FG et al (2017b) A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep 18:762–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler EG (1933) Regeneration of the fore limb. J Exptl Zool 65:271–315

    Article  Google Scholar 

  • Butler EG, O’Brien JP (1942) Effects of localized x-radiation on regeneration of the urodele limb. Anat Rec 84:407–413

    Article  Google Scholar 

  • Buzgariu W, Wenger Y, Tcaciuc N, Catunda-Lemos A-P, Galliot B (2018) Impact of cycling cells and cell cycle regulation on Hydra regeneration. Dev Biol 433:240–253

    Article  CAS  PubMed  Google Scholar 

  • Carlson MRJ, Bryant SV, Gardiner DM (1998) Expression of Msx-2 during development, regeneration, and wound healing in axolotl limbs. J Exp Zool 282:715–723

    Article  CAS  PubMed  Google Scholar 

  • Carr MJ, Toma JS, Johnston APW, Steadman PE, Yuzwa SA, Mahmud N, Frankland PW, Kaplan DR, Miller FD (2019) Mesenchymal precursor cells in adult nerves contribute to mammalian tissue repair and regeneration. Cell Stem Cell 24:240–256.e9

    Article  CAS  PubMed  Google Scholar 

  • Carroll RL (2007) The palaeozoic ancestry of salamanders, frogs and caecilians. Zool J Linnean Soc 150:1–140

    Article  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D et al (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WCW, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K, Wang Y (2016) Decellularized zebrafish cardiac extracellular matrix induces mammalian heart regeneration. Sci Adv 2(11):e1600844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chew KE, Cameron JA (1983) Increase in mitotic activity of regenerating axolotl limbs by growth factor-impregnated implants. J Exp Zool 226:325–329

    Article  Google Scholar 

  • Christensen RN, Weinstein M, Tassava RA (2002) Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma. Dev Dyn 223:193–203

    Article  CAS  PubMed  Google Scholar 

  • Collins JP (1981) Distribution, habitats and life history variation in the tiger salamander, Ambystoma tigrinum, in East-Central and Southeast Arizona published by: American Society of Ichthyologists and Herpetologists Distribution, Habitats and Life History Variation. Copeia 1981:666–675

    Article  Google Scholar 

  • Colwell AS, Longaker MT, Lorenz HP (2005) Mammalian fetal organ regeneration. Adv Biochem Eng Biotechnol 93:83–100

    CAS  PubMed  Google Scholar 

  • Contreras V, Mart i nez-Meyer E, Valiente E, Zambrano L (2009) Recent decline and potential distribution in the last remnant area of the microendemic Mexican axolotl (Ambystoma mexicanum). Biol Conserv 142:2881–2885

    Article  Google Scholar 

  • Crawford K, Stocum DL (1988) Retinoic acid proximalizes level-specific properties responsible for intercalary regeneration in axolotl limbs. Development 104:703–712

    Article  CAS  PubMed  Google Scholar 

  • Currie JD, Kawaguchi A, Traspas RM, Schuez M, Chara O, Tanaka EM (2016) Live imaging of axolotl digit regeneration reveals spatiotemporal choreography of diverse connective tissue progenitor pools. Dev Cell 39:411–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie JD, Grosser L, Murawala P, Schuez M, Michel M, Tanaka EM, Sandoval-Guzmán T (2019) The Prrx1 limb enhancer marks an adult subpopulation of injury-responsive dermal fibroblasts. Biol Open 8:bio043711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva SM, Gates PB, Brockes JP (2002) The newt ortholog of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 3:547–555

    Article  PubMed  Google Scholar 

  • Denis J-F, Sader F, Gatien S, Villiard É, Philip A, Roy S (2016) Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration. Development (Cambridge) 143:3481–3490

    CAS  Google Scholar 

  • Dinsmore CE (2007) A history of regeneration research. Cambridge University Press, Cambridge

    Google Scholar 

  • Douglas BS (1972) Conservative management of guillotine amputation of finger in children. Aust Paediatr J 8:86–89

    CAS  PubMed  Google Scholar 

  • Dunis DA, Namenwirth M (1977) The role of grafted skin in the regeneration of X-irradiated axolotl limbs. Dev Biol 56:97–109

    Article  CAS  PubMed  Google Scholar 

  • Echeverri K, Tanaka EM (2005) Proximodistal patterning during limb regeneration. Dev Biol 279:391–401

    Article  CAS  PubMed  Google Scholar 

  • Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145

    Article  CAS  PubMed  Google Scholar 

  • Enyedi B, Jelcic M, Niethammer P (2016) The cell nucleus serves as a mechanotransducer of tissue damage-induced inflammation. Cell 165:1160–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farkas JE, Monaghan JR (2017) A brief history of the study of nerve dependent regeneration. Neurogenesis 4:1–12

    Article  CAS  Google Scholar 

  • Farkas JE, Freitas PD, Bryant DM, Whited JL, Monaghan JR (2016) Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development 143:2724–2731

    CAS  PubMed  Google Scholar 

  • Fausto N (2004) Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology 39:1477–1487

    Article  PubMed  Google Scholar 

  • Fernando WA, Leininger E, Simkin J, Li N, Malcom CA, Sathyamoorthi S, Han M, Muneoka K (2011) Wound healing and Blastema formation in regenerating digit tips of adult mice. Dev Biol 350:301–310

    Article  CAS  PubMed  Google Scholar 

  • Ferris DR, Satoh A, Mandefro B, Cummings GM, Gardiner DM, Rugg EL (2010) Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin. Develop Growth Differ 52:715–724

    Article  Google Scholar 

  • Fröbisch NB, Shubin NH (2011) Salamander limb development: integrating genes, morphology, and fossils. Dev Dyn 240:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Fröbisch NB, Bickelmann C, Witzmann F (2014) Early evolution of limb regeneration in tetrapods: evidence from a 300-million-year-old amphibian. Proc R Soc B Biol Sci 281(1794):20141550

    Article  Google Scholar 

  • Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18:397–405

    Article  CAS  PubMed  Google Scholar 

  • Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77:837–855

    Article  CAS  PubMed  Google Scholar 

  • Gao K-Q, Shubin NH (2003) Earliest known crown-group salamanders. Nature 422:424–428

    Article  CAS  PubMed  Google Scholar 

  • Gaviño MA, Reddien PW (2011) A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians. Curr Biol 21:294–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gemberling M, Bailey TJ, Hyde DR, Poss KD (2013) The zebrafish as a model for complex tissue regeneration. Trends Genet 29:611–620

    Article  CAS  PubMed  Google Scholar 

  • Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, Gac-Santel M, Nowoshilow S, Kageyama J, Khattak S et al (2018) Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science 362(80):eaaq0681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geurtzen K, Knopf F, Wehner D, Huitema LFA, Schulte-Merker S, Weidinger G (2014) Mature osteoblasts dedifferentiate in response to traumatic bone injury in the zebrafish fin and skull. Development 141:2225–2234

    Article  CAS  PubMed  Google Scholar 

  • Gierer A, Berking S, Bode H, David NC, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration in hydra from reaggregated cells. Nat New Biol 239:98–101

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF (1997) Developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Globus M, Smith MJ, Vethamany-Globus S (1991) Evidence supporting a mitogenic role for substance P in amphibian limb regeneration. Ann N Y Acad Sci 632:396–399

    Article  CAS  PubMed  Google Scholar 

  • Godwin JW, Pinto AR, Rosenthal NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110:9415–9420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godwin J, Kuraitis D, Rosenthal N (2014) Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol 56:47–55

    Article  CAS  PubMed  Google Scholar 

  • Goldhamer DJ, Tassava RA (1987) An analysis of proliferative activity in innervated and denervated forelimb regenerates of the newt, Notophthalmus viridescens. Development 100:619–628

    Article  Google Scholar 

  • Goss RJ (1956a) The regenerative responses of amputated limbs to delayed insertion into the body cavity. Anat Rec 126:283–297

    Article  CAS  PubMed  Google Scholar 

  • Goss RJ (1956b) Regenerative inhibition following limb amputation and immediate insertion into the body cavity. Anat Rec 126:15–27

    Article  CAS  PubMed  Google Scholar 

  • Grohme MA, Schloissnig S, Rozanski A, Pippel M, Young GR, Winkler S, Brandl H, Henry I, Dahl A, Powell S et al (2018) The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms. Nature 554:56–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han MJ, An JY, Kim W-S (2001) Expression patterns of Fgf-8 during development and limb regeneration of the axolotl. Dev Dyn 220:40–48

    Article  CAS  PubMed  Google Scholar 

  • Han M, Yang X, Farrington JE, Muneoka K (2003) Digit regeneration is regulated by Msx1 and BMP4 in fetal mice. Development 130:5123–5132

    Article  CAS  PubMed  Google Scholar 

  • Han M, Yang X, Lee J, Allan CH, Muneoka K (2008) Development and regeneration of the neonatal digit tip in mice. Dev Biol 315:125–135

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa T, Hall CJ, Crosier PS, Abe G, Kawakami K, Kudo A, Kawakami A (2017) Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold. elife 6:1–22

    Article  Google Scholar 

  • Hay ED (1958) The fine structure of blastema cells and differentiating cartilage cells in regenerating limbs of Amblystoma larvae. J Biophys Biochem Cytol 4:583–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay ED, Fischman DA (1961) Origin of the Blastema in regenerating limbs of the Newt Triturus viridescens. Dev Biol:1–34

    Google Scholar 

  • Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB-T, Santos CXC et al (2018) Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 20:307–319

    Article  CAS  PubMed  Google Scholar 

  • Iglesias M, Gomez-Skarmeta JL, Saló E, Adell T (2008) Silencing of Smed-betacatenin1 generates radial-like hypercephalized planarians. Development 135:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Illingworth CM (1974) Trapped fingers and amputated finger tips in children. J Pediatr Surg 9:853–858

    Article  CAS  PubMed  Google Scholar 

  • Iten LE, Bryant SV (1975) The interaction between the blastema and stump in the establishment of the anterior-posterior and proximal-distal organization of the limb regenerate. Dev Biol 44:119–147

    Article  CAS  PubMed  Google Scholar 

  • Ivankovic M, Haneckova R, Thommen A, Grohme MA, Vila-Farré M, Werner S, Rink JC (2019) Model systems for regeneration: planarians. Development 146:dev167684–12

    Article  CAS  Google Scholar 

  • Johnston APW, Yuzwa SA, Carr MJ, Mahmud N, Storer MA, Krause MP, Jones K, Paul S, Kaplan DR, Miller FD (2016) Dedifferentiated schwann cell precursors secreting paracrine factors are required for regeneration of the mammalian digit tip. Cell Stem Cell 19:433–448

    Article  CAS  PubMed  Google Scholar 

  • Jopling C, Sleep E, Raya M, Martí M, Raya A, Belmonte JCI (2010) Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature:1–6

    Google Scholar 

  • Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Marti M, Dubova I, Izpisua Belmonte JC (2006) Wnt/beta-catenin signaling regulates vertebrate limb regeneration. Genes Dev 20:3232–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiffmeyer WR, Tomusk EV, Mescher AL (1991) Axonal transport and release of transferrin in nerves of regenerating amphibian limbs. Dev Biol 147:392–402

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi K, Holdway JE, Werdich AA, Anderson RM, Fang Y, Egnaczyk GF, Evans T, MacRae CA, Stainier DYR, Poss KD (2010) Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 464(7288):601–605,1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knapp D, Tanaka EM (2012) Regeneration and reprogramming. Curr Opin Genet Dev 22:485–493

    Article  CAS  PubMed  Google Scholar 

  • Knopf F, Hammond C, Chekuru A, Kurth T, Hans S, Weber CW, Mahatma G, Fisher S, Brand M, Schulte-Merker S et al (2011) Bone regenerates via dedifferentiation of osteoblasts in the zebrafish fin. Dev Cell 20:713–724

    Article  CAS  PubMed  Google Scholar 

  • Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460:60–65

    Article  CAS  PubMed  Google Scholar 

  • Kroehne V, Freudenreich D, Hans S, Kaslin J, Brand M (2011) Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138:4831–4841

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318(80):772–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126:1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee LP, Lau PY, Chan CW (1995) A simple and efficient treatment for fingertip injuries. J Hand Surg Br 20:63–71

    Article  CAS  PubMed  Google Scholar 

  • Lehoczky JA, Robert B, Tabin CJ (2011) Mouse digit tip regeneration is mediated by fate-restricted progenitor cells. Proc Natl Acad Sci U S A 108:20609–20614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leigh ND, Dunlap GS, Johnson K, Mariano R, Oshiro R, Wong AY, Bryant DM, Miller BM, Ratner A, Chen A et al (2018) Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nat Commun 9:1–14

    Article  CAS  Google Scholar 

  • Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard É, Pilote M, Philip A, Roy S (2007) Transforming growth factor: β signaling is essential for limb regeneration in axolotls. PLoS One 2:e1227–e1214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liversage RA, McLaughlin DS (1983) Effects of delayed amputation on denervated forelimbs of adult newt. J Embryol Exp Morphol. 75:1–10

    CAS  PubMed  Google Scholar 

  • Liversage RA, Stewart WE, McLaughlin DS (1984) In vitro studies of the influence of prolactin on tail regeneration in the adult newt Notophthalmus viridescens. Wilhelm Roux’s Arch Dev Biol 193:379–387

    Article  CAS  Google Scholar 

  • Love NR, Chen Y, Ishibashi S, Kritsiligkou P, Lea R, Koh Y, Gallop JL, Dorey K, Amaya E (2013) Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 15:222–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loyd RM, Tassava RA (1980) DNA synthesis and mitosis in adult newt limbs following amputation and insertion into the body cavity. J Exp Zool 214:61–69

    Article  CAS  PubMed  Google Scholar 

  • Maden M (1978) Neurotrophic control of the cell cycle during amphibian limb regeneration. J Embryol Exp Morphol 48:169–175

    CAS  PubMed  Google Scholar 

  • Maden M (1980) Structure of supernumerary limbs. Nature 286:803–805

    Article  Google Scholar 

  • Maden M (1983) The effect of vitamin A on the regenerating axolotl limb. J Embryol Exp Morphol 77:273–295

    CAS  PubMed  Google Scholar 

  • Makanae A, Hirata A, Honjo Y, Mitogawa K, Satoh A (2013) Nerve independent limb induction in axolotls. Dev Biol 381:213–226

    Article  CAS  PubMed  Google Scholar 

  • Makanae A, Mitogawa K, Satoh A (2014) Co-operative Bmp- and Fgf-signaling inputs convert skin wound healing to limb formation in urodele amphibians. Dev Biol 396:57–66

    Article  CAS  PubMed  Google Scholar 

  • Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238:1613–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques IJ, Lupi E, Mercader N (2019) Model systems for regeneration: zebrafish. Development 146:dev167692–13

    Article  CAS  Google Scholar 

  • Matsuda H, Yokoyama H, Endo T, Tamura K, Ide H (2001) An epidermal signal regulates Lmx-1 expression and dorsal-ventral pattern during Xenopus limb regeneration. Dev Biol 229:351–362

    Article  CAS  PubMed  Google Scholar 

  • McCauley B, Maxwell D, Collard M (2018) A cross-cultural perspective on upper Palaeolithic hand images with missing phalanges. J Paleo Arch 1:1–20

    Article  Google Scholar 

  • McKim LH (1932) Regeneration of the distal phalanx. Can Med Assoc J 26(5):549–550. 1–2

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mercader N, Tanaka EM, Torres M (2005) Proximodistal identity during vertebrate limb regeneration is regulated by Meis homeodomain proteins. Development 132:4131–4142

    Article  CAS  PubMed  Google Scholar 

  • Mescher AL (1976) Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J Exp Zool 195:117–127

    Article  CAS  PubMed  Google Scholar 

  • Mescher AL, Gospodarowicz D (1979) Mitogenic effect of a growth factor derived from myelin on denervated regenerates of newt forelimbs. J Exp Zool 207:497–504

    Article  CAS  Google Scholar 

  • Mescher AL, Munaim SI (1986) Changes in the extracellular matrix and glycosaminoglycan synthesis during the initiation of regeneration in adult newt forelimbs. Anat Rec 214:424–431

    Article  CAS  PubMed  Google Scholar 

  • Mescher AL, Tassava RA (1975) Denervation effects on DNA replication and mitosis during the initiation of limb regeneration in adult newts. Dev Biol 44:187–197

    Article  CAS  PubMed  Google Scholar 

  • Mescher AL, Connell E, Hsu C, Patel C, Overton B (1997) Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Develop Growth Differ 39:677–684

    Article  CAS  Google Scholar 

  • Miller BM, Johnson K, Whited JL (2019) Common themes in tetrapod appendage regeneration: a cellular perspective. EvoDevo 10:1–13

    Article  CAS  Google Scholar 

  • Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14:561–574

    Article  CAS  PubMed  Google Scholar 

  • Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A (2012) Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol 22:1166–1175

    Article  CAS  PubMed  Google Scholar 

  • Mohammad KS, Day FA, Neufeld DA (1999) Bone growth is induced by nail transplantation in amputated proximal phalanges. Calcif Tissue Int 65:1–3

    Article  Google Scholar 

  • Monaghan JR, Maden M (2012) Visualization of retinoic acid signaling in transgenic axolotls during limb development and regeneration. Dev Biol 368:63–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, Zhu W, Pao GM, Verma IM, Hunter T et al (2009) Microarray and cDNA sequence analysis of transcription during nerve-dependent limb regeneration. BMC Biol 7:1–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morgan TH (1901) Regeneration and liability to injury. Science 14:235–248

    Article  CAS  PubMed  Google Scholar 

  • Mullen LM, Bryant SV, Torok MA, Blumberg B, Gardiner DM (1996) Nerve dependency of regeneration: the role of distal-less and FGF signaling in amphibian limb regeneration. Development 122:3487–3497

    Article  CAS  PubMed  Google Scholar 

  • Muneoka K, Sassoon D (1992) Molecular aspects of regeneration in develo** vertebrate limbs. Dev Biol 152:37–49

    Article  CAS  PubMed  Google Scholar 

  • Muneoka K, Fox WF, Bryant SV (1986) Cellular contribution from dermis and cartilage to the regenerating limb blastema in axolotls. Dev Biol 116:256–260

    Article  CAS  PubMed  Google Scholar 

  • Nachtomy O, Smith JEH (2014) The life sciences in early modern philosophy. Oxford University Press, Oxford

    Book  Google Scholar 

  • Nacu E, Tanaka EM (2011) Limb regeneration: a new development? Annu Rev Cell Dev Biol 27:409–440

    Article  CAS  PubMed  Google Scholar 

  • Nacu E, Glausch M, Le HQ, Damanik FFR, Schuez M, Knapp D, Khattak S, Richter T, Tanaka EM (2013) Connective tissue cells, but not muscle cells, are involved in establishing the proximo-distal outcome of limb regeneration in the axolotl. Dev 140:513–518

    Article  CAS  Google Scholar 

  • Nacu E, Gromberg E, Oliveira CR, Drechsel D, Tanaka EM (2016) FGF8 and SHH substitute for anterior-posterior tissue interactions to induce limb regeneration. Nature 533:407–410

    Article  CAS  PubMed  Google Scholar 

  • Neufeld DA, Aulthouse AL (1986) Association of mesenchyme with attenuated basement membranes during morphogenetic stages of newt limb regeneration. Am J Anat 176:411–421

    Article  CAS  PubMed  Google Scholar 

  • Neufeld DA, Zhao W (1995) Bone regrowth after digit tip amputation in mice is equivalent in adults and neonates. Wound Repair Regen 3:461–466

    Article  CAS  PubMed  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220:142–153

    Article  CAS  PubMed  Google Scholar 

  • Newmark PA, Sánchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3:210–219

    Article  CAS  PubMed  Google Scholar 

  • Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG et al (2018) The axolotl genome and the evolution of key tissue formation regulators. Nature 554:50–55

    Article  CAS  PubMed  Google Scholar 

  • Nye HLD, Cameron JA, Chernoff EAG, Stocum DL (2003) Extending the table of stages of normal development of the axolotl: limb development. Dev Dyn 226:555–560

    Article  PubMed  Google Scholar 

  • Odland G, Ross R (1968) Human wound repair. I. Epidermal regeneration. J Cell Biol 39:135–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neill EM, Schwartz R, Bullock CT, Williams JS, Shaffer HB, Aguilar-Miguel X, Parra-Olea G, Weisrock DW (2013) Parallel tagged amplicon sequencing reveals major lineages and phylogenetic structure in the North American tiger salamander (Ambystoma tigrinum) species complex. Mol Ecol 22:111–129

    Article  PubMed  CAS  Google Scholar 

  • Osorno R, Tsakiridis A, Wong F, Cambray N, Economou C, Wilkie R, Blin G, Scotting PJ, Chambers I, Wilson V (2012) The developmental dismantling of pluripotency is reversed by ectopic Oct4 expression. TL - 139. Development 139:2288–2298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JE, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187:S11–S16

    Article  CAS  Google Scholar 

  • Park HD, Ortmeyer AB, Blankenbaker DP (1970) Cell division during regeneration in Hydra. Nature 227:617–619

    Article  CAS  PubMed  Google Scholar 

  • Payzin-Dogru D, Whited JL (2018) An integrative framework for salamander and mouse limb regeneration. Int J Dev Biol 62:393–402

    Article  CAS  PubMed  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2185–2188

    Article  CAS  Google Scholar 

  • Poulin ML, Chiu I-M (1995) Re-programming of expression of the KGFR and bek variants of fibroblast growth factor receptor 2 during limb regeneration in newts (Notophthalmus viridescens). Dev Dyn 202:378–387

    Article  CAS  PubMed  Google Scholar 

  • Poulin ML, Patrie KM, Botelho MJ, Tassava RA, Chiu IM (1993) Heterogeneity in the expression of fibroblast growth factor receptors during limb regeneration in newts (Notophthalmus viridescens). Development 119:353–361

    Article  CAS  PubMed  Google Scholar 

  • Pownall ME, Isaacs HV (2010) Limb development. FGF Signalling in Vertebrate Development, Limb Development. Morgan & Claypool Life Sciences. 16:110–123

    Google Scholar 

  • Rabiela TR (1998) La cosecha del agua en la cuenca de México. CIESAS, México

    Google Scholar 

  • Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B et al (2009) Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7:1–25

    Article  CAS  Google Scholar 

  • Razzell W, Evans IR, Martin P, Wood W (2013) Calcium flashes orchestrate the wound inflammatory response through Duox activation and hydrogen peroxide release. Curr Biol 23:424–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddien PW (2013) Specialized progenitors and regeneration. Development 140:951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddien PW (2018) The cellular and molecular basis for planarian regeneration. Cell 175:1–19

    Article  CAS  Google Scholar 

  • Reddien PW, Bermange AL, Murfitt KJ, Jennings JR, Sánchez Alvarado A (2005) Identification of genes needed for regeneration, stem cell function, and tissue homeostasis by systematic gene perturbation in planaria. Dev Cell 8:635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reginelli AD, Wang YQ, Sassoon D, Muneoka K (1995) Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121:1065–1076

    Article  CAS  PubMed  Google Scholar 

  • Repesh LA, Oberpriller JC (1980) Ultrastructural studies on migrating epidermal cells during the wound healing stage of regeneration in the adult newt, Notophthalmus viridescens. Am J Anat 159:187–208

    Article  CAS  PubMed  Google Scholar 

  • Richmond MJ, Pollack ED (1983) Regulation of tadpole spinal nerve fiber growth by the regenerating limb blastema in tissue culture. J Exp Zool 225:233–242

    Article  CAS  PubMed  Google Scholar 

  • Rink JC (2013) Stem cell systems and regeneration in planaria. Dev Genes Evol 223:67–84

    Article  PubMed  Google Scholar 

  • Rinkevich Y, Lindau P, Ueno H, Longaker MT, Weissman IL (2012) Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476:409–413

    Article  CAS  Google Scholar 

  • Rinkevich Y, Montoro DT, Muhonen E, Walmsley GG, Lo D, Hasegawa M, Januszyk M, Connolly AJ, Weissman IL, Longaker MT (2014) Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proc Natl Acad Sci U S A

    Google Scholar 

  • Roensch K, Tazaki A, Chara O, Tanaka EM (2013) Progressive specification rather than intercalation of segments during limb regeneration. Science 342(80):1375–1379

    Article  CAS  PubMed  Google Scholar 

  • Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Semin Liver Dis 23:385–396

    Article  CAS  PubMed  Google Scholar 

  • Rowlatt U (1979) Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol 381:353–361

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Gardiner DM (2002) Cyclopamine induces digit loss in regenerating axolotl limbs. J Exp Zool 293:186–190

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Gardiner DM, Bryant SV (2000) Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of Shh. Dev Biol 218:199–205

    Article  CAS  PubMed  Google Scholar 

  • Sader F, Denis J-FXO, Laref H, Roy SXP (2019) Epithelial to mesenchymal transition is mediated by both TGF-β canonical and non-canonical signaling during axolotl limb regeneration. Nat Publ Group 9:1–13

    CAS  Google Scholar 

  • Salpeter MM, Singer M (1960) The fine structure of mesenchymatous cells in the regenerating forelimb of the adult newt Triturus. Dev Biol 2:516–534

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AA (2006) Planarian regeneration: its end is its beginning. Cell 124:241–245

    Article  CAS  Google Scholar 

  • Sandoval-Guzmán T, Currie JD (2018) The journey of cells through regeneration. Curr Opin Cell Biol 55:36–41

    Article  PubMed  CAS  Google Scholar 

  • Sandoval-Guzmán T, Wang H, Khattak S, Schuez M, Roensch K, Nacu E, Tazaki A, Joven A, Tanaka EM, Simon A (2014) Fundamental differences in dedifferentiation and stem cell recruitment during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14:174–187

    Article  PubMed  CAS  Google Scholar 

  • Satoh A, Gardiner DM, Bryant SV, Endo T (2007) Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Dev Biol 312:231–244

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Graham GMC, Bryant SV, Gardiner DM (2008) Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 319:321–335

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Makanae A, Hirata A, Satou Y (2011) Blastema induction in aneurogenic state and Prrx-1 regulation by MMPs and FGFs in Ambystoma mexicanum limb regeneration. Dev Biol 355:263–274

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Bryant SV, Gardiner DM (2012) Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum). Dev Biol 366:374–381

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Mitogawa K, Makanae A (2015) Regeneration inducers in limb regeneration. Develop Growth Differ 57:421–429

    Article  CAS  Google Scholar 

  • Satoh A, Makanae A, Nishimoto Y, Mitogawa K (2016) FGF and BMP derived from dorsal root ganglia regulate blastema induction in limb regeneration in Ambystoma mexicanum. Dev Biol 417:114–125

    Article  CAS  PubMed  Google Scholar 

  • Scadding SR, Maden M (1994) Retinoic acid gradients during limb regeneration. Dev Biol 162:608–617

    Article  CAS  PubMed  Google Scholar 

  • Schotté OE, Butler EG (1941) Morphological effects of denervation and amputation of limbs in urodele larvae. J Exp Zool 87:279–322

    Article  Google Scholar 

  • Schotté OE, Butler EG (1944) Phases in regeneration of the urodele limb and their dependence upon the nervous system. J Exp Zool 97:95–121

    Article  Google Scholar 

  • Schultz J, Fitze G (2018) Conservative treatment of fingertip injuries in children – first experiences with a novel silicone finger cap that enables woundfluid analysis. 1–12. GMS Interdiscip Plast Reconstr Surg DGPW. 7, Doc5.

    Google Scholar 

  • Sehring IM, Jahn C, Weidinger G (2016) ScienceDirect zebrafish fin and heart: what’s special about regeneration? Curr Opin Genet Dev 40:48–56

    Article  CAS  PubMed  Google Scholar 

  • Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M (2012) Skin shedding and tissue regeneration in African spiny mice (Acomys). Nature 489:561–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaffer HB (1984) Evolution in a paedomorphic lineage. I. an electrophoretic analysis of the mexican ambystomatid salamanders. Evolution 38:1194–1206

    Article  PubMed  Google Scholar 

  • Shaffer HB (1993) Phylogenetics of model organisms: the laboratory axolotl, ambystoma mexicanum. Syst Biol 42:508–522

    Article  Google Scholar 

  • Shaffer HB, Randal Voss S (1996) Phylogenetic and mechanistic analysis of a developmentally integrated character complex: alternate life history modes in ambystomatid salamanders. Am Zool 36:24–35

    Article  Google Scholar 

  • Shen XX, Liang D, Feng YJ, Chen MY, Zhang P (2013) A versatile and highly efficient toolkit including 102 nuclear markers for vertebrate phylogenomics, tested by resolving the higher level relationships of the caudata. Mol Biol Evol 30:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Simkin J, Seifert AW (2017) Concise review: translating regenerative biology into clinically relevant therapies: are we on the right path? Stem Cells Transl Med 7:220–231

    Article  PubMed  PubMed Central  Google Scholar 

  • Simkin J, Sammarco MC, Dawson LA, Tucker C, Taylor LJ, Van Meter K, Muneoka K (2015) Epidermal closure regulates histolysis during mammalian (Mus) digit regeneration. Regeneration 2:106–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simkin J, Gawriluk TR, Gensel JC, Seifert AW (2017a) Macrophages are necessary for epimorphic regeneration in African spiny mice. elife 6:1–26

    Article  Google Scholar 

  • Simkin J, Sammarco MC, Marrero L, Dawson LA, Yan M, Tucker C, Cammack A, Muneoka K (2017b) Macrophages are required to coordinate mouse digit tip regeneration. Development 144(21):3907–3916. dev.150086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer M (1946) The nervous system and regeneration of the forelimb of adult Triturus. V. The influence of number of nerve fibers, including a quantitative study of limb innervation. J Exp Zool 101:299–337

    Article  CAS  PubMed  Google Scholar 

  • Singer M (1949) The invasion of the epidermis of the regenerating forelimb of the urodele, Triturus, by nerve fibers. J Exp Zool 111:189–209

    Article  CAS  PubMed  Google Scholar 

  • Singer M, Craven L (1948) The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development. J Exp Zool 108:279–308

    Article  CAS  PubMed  Google Scholar 

  • Singer M, Inoue S (1964) The nerve and the epidermal apical cap in regeneration of the forelimb of adult Triturus. J Exp Zool 155:105–115

    Article  CAS  PubMed  Google Scholar 

  • Singer M, Weckesser EC, Géraudie J, Maier CE, Singer J (1987) Open finger tip healing and replacement after distal amputation in Rhesus monkey with comparison to limb regeneration in lower vertebrates. Anat Embryol:1–8

    Google Scholar 

  • Singh SP, Holdway JE, Poss KD (2012) Regeneration of amputated zebrafish fin rays from De Novo Osteoblasts. Dev Cell 22:879–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith AR, Wolpert L (1975) Nerves and angiogenesis in amphibian limb regeneration. Nature 257:224–225

    Article  CAS  PubMed  Google Scholar 

  • Steen TP, Thornton CS (1963) Tissue interaction in amputated aneurogenic limbs of Ambystoma larvae. J Exp Zool 154:207–221

    Article  CAS  PubMed  Google Scholar 

  • Stevenson TJ, Vinarsky V, Atkinson DL, Keating MT, Odelberg SJ (2006) Tissue inhibitor of metalloproteinase 1 regulates matrix metalloproteinase activity during newt limb regeneration. Dev Dyn 235:606–616

    Article  CAS  PubMed  Google Scholar 

  • Stewart S, Stankunas K (2012) Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol 365:339–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocum DL (1982) Determination of axial polarity in the urodele limb regeneration blastema. J Embryol Exp Morphol 71:193–214

    CAS  PubMed  Google Scholar 

  • Stocum DL (1984) The urodele limb regeneration blastema. Differentiation 27:13–28

    Article  CAS  PubMed  Google Scholar 

  • Stocum DL (2017) Mechanisms of urodele limb regeneration. Regeneration 4:159–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Stückemann T, Cleland JP, Werner S, Vu HT-K, Bayersdorf R, Liu S-Y, Friedrich B, Jülicher F, Rink JC (2017) Antagonistic self-organizing patterning systems control maintenance and regeneration of the anteroposterior axis in planarians. Dev Cell 40:248–263.e4

    Article  PubMed  CAS  Google Scholar 

  • Sugiura T, Wang H, Barsacchi R, Simon A, Tanaka EM (2016) MARCKS-like protein is an initiating molecule in axolotl appendage regeneration. Nature 531:237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takashima S, Gold D, Hartenstein V (2013) Stem cells and lineages of the intestine: a developmental and evolutionary perspective. Dev Genes Evol 223:85–102

    Article  PubMed  Google Scholar 

  • Takeo M, Chou WC, Sun Q, Lee W, Rabbani P, Loomis C, Taketo MM, Ito M (2013) Wnt activation in nail epithelium couples nail growth to digit regeneration. Nature 499:228–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka EM (2016) The molecular and cellular choreography of appendage regeneration. Cell 165:1598–1608

    Article  CAS  PubMed  Google Scholar 

  • Tanaka EM, Drechsel DN, Brockes JP (1999) Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr Biol 9:792–799

    Article  CAS  PubMed  Google Scholar 

  • Tang JB, Elliot D, Adani R, Saint-Cyr M, Stang F (2014) Repair and reconstruction of thumb and finger tip injuries: a global view. Clin Plast Surg 41:325–359

    Article  PubMed  Google Scholar 

  • Tank PW, Carlson BM, Connelly TG (1976) A staging system for forelimb regeneration in the axolotl, Ambystoma mexicanum. J Morphol 150:117–128

    Article  CAS  PubMed  Google Scholar 

  • Tetteh PW, Basak O, Farin HF, Wiebrands K, Kretzschmar K, Begthel H, van den Born M, Korving J, de Sauvage F, van Es JH et al (2016) Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Stem Cell 18:203–213

    CAS  Google Scholar 

  • Thornton CS (1957) The effect of apical cap removal on limb regeneration on Ambystoma larvae. J Exp Zool A Ecol Genet Physiolss 134:357–381

    CAS  Google Scholar 

  • Thornton CS (1960) Influence of an eccentric epidermal cap on limb regeneration in Amblystoma larvae. Dev Biol 2:551–569

    Article  CAS  PubMed  Google Scholar 

  • Thornton CS, Thornton MT (1970) Recuperation of regeneration in denervated limbs of Ambystoma larvae. J Exp Zool 173:293–301

    Article  Google Scholar 

  • Tihen JA (1958) Comments on the osteology and phylogeny of Ambystomatid salamanders. Bull Florida State Museum Biol Sci 3:1–51

    Google Scholar 

  • Tornini VA, Puliafito A, Slota LA, Thompson JD, Nachtrab G, Kaushik A-L, Kapsimali M, Primo L, Di Talia S, Poss KD (2016) Live monitoring of blastemal cell contributions during appendage regeneration. Curr Biol 26:2981–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai SL, Baselga-Garriga C, Melton DA (2019) Blastemal progenitors modulate immune signaling during early limb regeneration. Development (Cambridge) 146:dev169128

    Article  CAS  Google Scholar 

  • van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee ANY, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J et al (2012) Dll1(+) secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14:1099–1104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinarsky V, Atkinson DL, Stevenson TJ, Keating MT, Odelberg SJ (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279:86–98

    Article  CAS  PubMed  Google Scholar 

  • Voss SR, Woodcock MR, Zambrano L (2015) A Tale of Two Axolotls. BioScience 65(12):1134–1140

    Google Scholar 

  • Wade MJ, McKnight ML, Shaffer HB (1994) The effects of kin-structured colonization on nuclear and cytoplasmic genetic diversity. Evolution 48:1114

    PubMed  Google Scholar 

  • Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332:811–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace H (1972) The components of regrowing nerves which support the regeneration of irradiated salamander limbs. J Embryol Exp Morphol 28:419–435

    CAS  PubMed  Google Scholar 

  • Wallace HH (1981) Vertebrate limb regeneration. Wiley, Chichester

    Google Scholar 

  • Weis JS, Weis P (1970) The effect of nerve growth factor on limb regeneration in Ambystoma. J Exp Zool 174:73–78

    Article  CAS  PubMed  Google Scholar 

  • Weisrock DW, Shaffer HB, Storz BL, Storz SR, Voss SR (2006) Multiple nuclear gene sequences identify phylogenetic species boundaries in the rapidly radiating clade of Mexican ambystomatid salamanders. Mol Ecol 15:2489–2503

    Article  CAS  PubMed  Google Scholar 

  • Wells JM, Watt FM (2018) Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 557:322–328

    Article  CAS  PubMed  Google Scholar 

  • Williams JS, Niedzwiecki JH, Weisrock DW (2013) Species tree reconstruction of a poorly resolved clade of salamanders (Ambystomatidae) using multiple nuclear loci. Mol Phylogenet Evol 68:671–682

    Article  PubMed  Google Scholar 

  • Wolpert L, Beddington R, Jessell T, Lawrence P, Meyerowitz E, Smith J (2002) Principles of development, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Yahalom-Ronen Y, Rajchman D, Sarig R, Geiger B, Tzahor E (2015) Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. elife 4:1–18

    Article  Google Scholar 

  • Yang EV, Byant SV (1994) Developmental regulation of a matrix metalloproteinase during regeneration of axolotl appendages. Dev Biol 166:696–703

    Article  CAS  PubMed  Google Scholar 

  • Yang EV, Gardiner DM, Carlson MR, Nugas CA, Bryant SV (1999) Expression of Mmp-9 and related matrix metalloproteinase genes during axolotl limb regeneration. Dev Dyn 216:2–9

    Article  CAS  PubMed  Google Scholar 

  • Yntema CL (1959) Regeneration in sparsely innervated and aneurogenic forelimbs of Amblystoma larvae. J Exp Zool 140:101–123

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Ogino H, Stoick-Cooper CL, Grainger RM, Moon RT (2007) Wnt/β-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 306:170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Han M, Yan M, Lee E-C, Lee J, Muneoka K (2010) BMP signaling induces digit regeneration in neonatal mice. Development 137:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun M (2015) Changes in regenerative capacity through lifespan. IJMS 16:25392–25432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Pao GM, Satoh A, Cummings G, Monaghan JR, Harkins TT, Bryant SV, Randal Voss S, Gardiner DM, Hunter T (2012) Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Dev Biol 370:42–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer M, Weckesser EC, Géraudie J, Maier CE, Singer J (1987) Open finger tip healing and 1660 replacement after distal amputation in Rhesus monkey with comparison to limb regeneration in 1661 lower vertebrates. Anat Embryol:1–8

    Google Scholar 

Download references

Acknowledgments

We thank the members of the Sandoval-Guzmán lab for their support. We thank the CRTD TU Dresden, Alexander von Humboldt Foundation, and DFG for funding the work of our laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Sandoval-Guzmán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aires, R., Keeley, S.D., Sandoval-Guzmán, T. (2020). Basics of Self-Regeneration. In: Gimble, J., Marolt Presen, D., Oreffo, R., Wolbank, S., Redl, H. (eds) Cell Engineering and Regeneration. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-08831-0_66

Download citation

Publish with us

Policies and ethics

Navigation