Evaluation of Pathogenicity Potential by Phenotypic and Genotypic Methodologies

  • Chapter
  • First Online:
Biosafety Assessment of Probiotic Potential

Abstract

Probiotic microorganisms can be included in various types of fermented food products or in supplements. Safety aspects are fundamental in the selection process of putative probiotics, namely origin, non-pathogenicity, and antibiotic resistance features. A careful evaluation of the virulence potential is fundamental during the selection of food-related microbes, being a prerequisite to assure the biosafety of putative probiotics. Screening for the production of known traits (e.g., hemolysin), as well as searching for virulence determinants, is mandatory. For a microorganism to be included in the GRAS—Generally Recognized as Safe—list (in the United States of America) or to harbor QPS—Qualified Presumption of Safety—status (in Europe) “the lack of pathogenic properties must be established and substantiated.” This chapter will address methodologies available for the evaluation of the pathogenicity of lactic acid bacteria -LAB-, with main emphasis on the Enterococcus genus, the most controversial LAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FAO/WHO. 2006. Food and agricultural Organization of the United Nations and World Health Organization. Probiotics in food health and nutritional properties and guidelines for evaluation. FAO, food and nutrition paper 85. ISSN 0254-4725. 50p. https://www.fao.org/3/a0512e/a0512e.pdf

  2. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  3. Patel RM, Denning PW (2013) Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? Clin Perinatol 40(1):11–25. https://doi.org/10.1016/j.clp.2012.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cohen PA (2018) Probiotic safety-no guarantees. JAMA Intern Med 178(12):1577–1578. https://doi.org/10.1001/jamainternmed.2018.5403

    Article  PubMed  Google Scholar 

  5. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), Koutsoumanis K, Allende A, Alvarez-Ordonez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, PS FE, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L (2020) Statement on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 11: suitability of taxonomic units notified to EFSA until September 2019. EFSA J 18(2):5965. https://doi.org/10.2903/j.efsa.2020.5965

    Article  Google Scholar 

  6. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME (2020) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17:687–701. https://doi.org/10.1038/s41575-020-0344-2

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fraqueza MJ (2015) Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol 212:76–88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035

    Article  CAS  PubMed  Google Scholar 

  8. Semedo T, Santos MA, Lopes MF, Figueiredo Marques JJ, Barreto Crespo MT, Tenreiro R (2003b) Virulence factors in food, clinical and reference enterococci: a common trait in the genus? Syst Appl Microbiol 26(1):13–22. https://doi.org/10.1078/072320203322337263

    Article  PubMed  Google Scholar 

  9. Franz CMAP, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151(2):125–140. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014

    Article  CAS  PubMed  Google Scholar 

  10. Semedo-Lemsaddek T, Barreto-Crespo MT, Tenreiro R (2012) Enterococcus and safety. Nova Science Publishers, Inc., NY, p 511. ISBN: 978-1-61470-569-7

    Google Scholar 

  11. Dapkevicius M, Sgardioli B, Câmara S, Poeta P, Malcata FX (2021) Current trends of enterococci in dairy products: a comprehensive review of their multiple roles. Foods (Basel, Switzerland) 10(4):821. https://doi.org/10.3390/foods10040821

    Article  CAS  Google Scholar 

  12. Lopes M, Simões AP, Tenreiro R, Marques JJ, Crespo MT (2006) Activity and expression of a virulence factor, gelatinase, in dairy enterococci. Int J Food Microbiol 112(3):208–214. https://doi.org/10.1016/j.ijfoodmicro.2006.09.004

    Article  CAS  Google Scholar 

  13. Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8(4):151–156

    Article  CAS  Google Scholar 

  14. Eaton TJ, Gasson MJ (2001) Molecular screening of enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol 67(4):1628–1635. https://doi.org/10.1128/AEM.67.4.1628-1635.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eaton TJ, Gasson MJ (2002) A variant enterococcal surface protein Esp(fm) in enterococcus faecium; distribution among food, commensal, medical, and environmental isolates. FEMS Microbiol Lett 216(2):269–275. https://doi.org/10.1111/j.1574-6968.2002.tb11446.x

    Article  CAS  PubMed  Google Scholar 

  16. Dong Y, Zhang F, Wang B, Gao J, Zhang J, Shao Y (2019) Laboratory evolution assays and whole-genome sequencing for the development and safety evaluation of lactobacillus plantarum with stable resistance to gentamicin. Front Microbiol 10:1235. https://doi.org/10.3389/fmicb.2019.01235

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gerner-Smidt P, Besser J, Concepción-Acevedo J, Folster JP, Huffman J, Joseph LA, Kucerova Z, Nichols MC, Schwensohn CA, Tolar B (2019) Whole genome sequencing: bridging one-health surveillance of foodborne diseases. Front Public Health 7:172. https://doi.org/10.3389/fpubh.2019.00172

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Liang Q, Lu B, Shen H, Liu S, Shi Y, Leptihn S, Li H, Wei J, Liu C, **ao H, Zheng X, Liu C, Chen H (2021) Whole-genome analysis of probiotic product isolates reveals the presence of genes related to antimicrobial resistance, virulence factors, and toxic metabolites, posing potential health risks. BMC Genomics 22(1):210. https://doi.org/10.1186/s12864-021-07539-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu Y, Lin Z, Tang C et al (2019) A new massively parallel nanoball sequencing platform for whole exome research. BMC Bioinformatics 20:153. https://doi.org/10.1186/s12859-019-2751-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abouelnaga M, Lamas A, Guarddon M, Osman M, Miranda JM, Cepeda A, Franco CM (2016) Assessment of food safety using a new real-time PCR assay for detection and quantification of virulence factors of enterococci in food samples. J Appl Microbiol 121(6):1745–1754. https://doi.org/10.1111/jam.13306

    Article  CAS  PubMed  Google Scholar 

  21. Zheng JX, Wu Y, Lin ZW, Pu ZY, Yao WM, Chen Z, Li DY, Deng QW, Qu D, Yu ZJ (2017) Characteristics of and virulence factors associated with biofilm formation in clinical enterococcus faecalis isolates in China. Front Microbiol 8:2338. https://doi.org/10.3389/fmicb.2017.02338

    Article  PubMed  PubMed Central  Google Scholar 

  22. Semedo T, Almeida Santos M, Martins P, Silva Lopes MF, Figueiredo Marques JJ, Tenreiro R, Barreto Crespo MT (2003a) Comparative study using type strains and clinical and food isolates to examine hemolytic activity and occurrence of the cyl operon in enterococci. J Clin Microbiol 41(6):2569–2576. https://doi.org/10.1128/JCM.41.6.2569-2576.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gaspar FB, Crespo M, Lopes M (2009) Proposal for a reliable enterococcal cytolysin production assay avoiding apparent incongruence between phenotype and genotype. J Med Microbiol 58(Pt 8):1122–1124. https://doi.org/10.1099/jmm.0.006361-0

    Article  CAS  PubMed  Google Scholar 

  24. Jackson CR, Fedorka-Cray PJ, Barrett JB (2004) Use of a genus- and species-specific multiplex PCR for identification of enterococci. J Clin Microbiol 42(8):3558–3565. https://doi.org/10.1128/JCM.42.8.3558-3565.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlos AR, Semedo-Lemsaddek T, Barreto-Crespo MT, Tenreiro R (2010) Transcriptional analysis of virulence-related genes in enterococci from distinct origins. J Appl Microbiol 108(5):1563–1575. https://doi.org/10.1111/j.1365-2672.2009.04551.x

    Article  CAS  PubMed  Google Scholar 

  26. Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I, Nallapareddy SR, Huang W, Murray BE (2003) A potential virulence gene, hylEfm, predominates in enterococcus faecium of clinical origin. J Infect Dis 187(3):508–512. https://doi.org/10.1086/367711

    Article  CAS  PubMed  Google Scholar 

  27. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, esp, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of enterococcus faecium. J Clin Microbiol 42(10):4473–4479. https://doi.org/10.1128/JCM.42.10.4473-4479.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5′----3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88(16):7276–7280. https://doi.org/10.1073/pnas.88.16.7276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim MA, Rosa V, Min KS (2020) Characterization of enterococcus faecalis in different culture conditions. Sci Rep 10(1):21867. https://doi.org/10.1038/s41598-020-78998-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tyson GH, Sabo JL, Rice-Trujillo C, Hernandez J, McDermott PF (2018) Whole-genome sequencing based characterization of antimicrobial resistance in Enterococcus. Pathog Dis 76(2). https://doi.org/10.1093/femspd/fty018

  31. Mannaa M, Seo YS, Park I (2019) Effect of seafood (gizzard Shad) supplementation on the chemical composition and microbial dynamics of radish kimchi during fermentation. Sci Rep 9(1):17693. https://doi.org/10.1038/s41598-019-54318-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nethery MA, Henriksen ED, Daughtry KV, Johanningsmeier SD, Barrangou R (2019) Comparative genomics of eight lactobacillus buchneri strains isolated from food spoilage. BMC Genomics 20(1):902. https://doi.org/10.1186/s12864-019-6274-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigo-Torres L, Yépez A, Aznar R, Arahal DR (2019) Genomic insights into five strains of lactobacillus plantarum with biotechnological potential isolated from chicha, a traditional maize-based fermented beverage from northwestern Argentina. Front Microbiol 10:2232. https://doi.org/10.3389/fmicb.2019.02232

    Article  PubMed  PubMed Central  Google Scholar 

  34. O'Donnell ST, Ross RP, Stanton C (2020) The Progress of multi-omics technologies: determining function in lactic acid bacteria using a systems level approach. Front Microbiol 10:3084. https://doi.org/10.3389/fmicb.2019.03084

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    Article  CAS  Google Scholar 

  36. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, Carnevali P, Nazarenko I, Nilsen GB, Yeung G et al (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science (New York, NY) 327(5961):78–81

    Article  CAS  Google Scholar 

  37. Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8

    Article  CAS  Google Scholar 

  38. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF, Clouser CR, Duncan C, Ichikawa JK, Lee CC et al (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res 19(9):1527–1541

    Article  CAS  Google Scholar 

  39. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356):348–352

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Teresa Semedo-Lemsaddek is financially supported by national funds through FCT—Foundation for Science and Technology, I.P. under the Transitional Standard—DL57/2016/CP1438/CT0004. We thanks projects PTDC/CVT-CVT/29510/2017, PTDC/OCE-ETA/1785/2020 and UIDB/00276/2020 (CIISA) supported by National Funds through FCT-Foundation for Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria João Fraqueza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Semedo-Lemsaddek, T., Fraqueza, M.J. (2022). Evaluation of Pathogenicity Potential by Phenotypic and Genotypic Methodologies. In: Dwivedi, M.K., Amaresan, N., Sankaranarayanan, A., Begum, R. (eds) Biosafety Assessment of Probiotic Potential. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2509-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2509-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2508-8

  • Online ISBN: 978-1-0716-2509-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation