Ergodic and Spectral Theory of Area-Preserving Flows on Surfaces

  • Reference work entry
  • First Online:
Ergodic Theory
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2021

Glossary

Borel flow is a family φ = (φt)t∈ℝ of Borel maps on a topological space X such that (t, x) ↦ φtx is also Borel, φ0 = IdX and \( {\varphi}_{t_1+{t}_2}={\varphi}_{t_1}\circ {\varphi}_{t_2} \) for all t1, t2 ∈ ℝ. The flow preserves a Borel probability measure μ on X if μ(φt(A)) = μ(A) for any Borel set A and any t ∈ ℝ. Then we say that φ is a measure-preserving flow of (X, μ).

If S is compact smooth manifold and the map (t, x) ↦ φtx is smooth, then φ is called a smooth flow. If additionally S is a surface (dimension two manifold) and an invariant measure μ is smooth and positive (has a smooth positive density), then φ is called an area-preserving smooth flow. Such flows are also called multi-valued or locally Hamiltonian.

We say that two flows φ on (X, μ) and ϕ on (Y, v) and are isomorphic as measure-preserving flows if there exists an isomorphism Φ : X → Y, i.e., a bimeasurable map which transports the measure μ to v (i.e., μ−1(A)) = ν(A) for any Borel set A ⊂ Y) and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Al-Saqban H, Apisa P, Erchenko A, Khalil O, Mirzadeh S, Uyanik C (2021) Exceptional directions for the Teichmüller geodesic flow and Hausdorff dimension. J Eur Math Soc (JEMS) 23(5):1423–1476

    Article  MathSciNet  MATH  Google Scholar 

  • Aranson SH, Grines VZ (1973) Certain invariants of dynamical systems on two-dimensional manifolds (necessary and sufficient conditions for the topological equivalence of transitive systems). Mat Sb (NS) 90(132):372–402, 479,

    MathSciNet  Google Scholar 

  • Arnold VI (1991) Topological and ergodic properties of closed 1-forms with incommensurable periods. Funktsional’nyi Analiz i Ego Prilozheniya 25(2):1–12. (Translated in: Funct Anal Appl 25(2):81–90, 1991)

    MathSciNet  Google Scholar 

  • Athreya JS, Chaika J (2015) The Hausdorff dimension of non-uniquely ergodic directions in H(2) is almost everywhere \( \frac{1}{2}. \) Geom Topol 19(6):3537–3563

    Google Scholar 

  • Avila A, Delecroix V (2016) Weak mixing directions in non-arithmetic Veech surfaces. J Am Math Soc 29(4):1167–1208

    Article  MathSciNet  MATH  Google Scholar 

  • Avila A, Forni G (2007) Weak mixing for interval exchange transformations and translation flows. Ann Math 165(2):637–664

    Article  MathSciNet  MATH  Google Scholar 

  • Avila A, Forni G, Ravotti D, Ulcigrai C (2021a) Mixing for smooth time-changes of general nilflows. Adv Math 385. Paper No. 107759:65

    Google Scholar 

  • Avila A, Forni G, Safaee P (2021b) Quantitative weak mixing for interval exchange transformations. https://arxiv.org/abs/2105.10547

    MATH  Google Scholar 

  • Avila A, Gouëzel S, Yoccoz J-C (2006) Exponential mixing for the Teichmüller flow. Publ Math Inst Hautes Études Sci 104:143–211

    Article  MATH  Google Scholar 

  • Avila A, Leguil M (2018) Weak mixing properties of interval exchange transformations & translation flows. Bull Soc Math France 146(2):391–426

    Article  MathSciNet  MATH  Google Scholar 

  • Avila A, Viana M (2007) Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture. Acta Math 198(1):1–56

    Article  MathSciNet  MATH  Google Scholar 

  • Berk P, Frączek K (2015) On special flows over IETs that are not isomorphic to their inverses. Discrete Contin Dyn Syst 35(3):829–855

    Article  MathSciNet  MATH  Google Scholar 

  • Berk P, Frączek K, de la Rue T (2020) On typicality of translation flows which are disjoint with their inverse. J Inst Math Jussieu 19(5):1677–1737

    Article  MathSciNet  MATH  Google Scholar 

  • Berk P, Kanigowski A (2021) Spectral disjointness of rescalings of some surface flows. J Lond Math Soc (2) 103(3):901–942

    Article  MathSciNet  MATH  Google Scholar 

  • Blohin AA (1972) Smooth ergodic flows on surfaces. Trudy Moskov Mat Obšč 27:113–128

    MathSciNet  Google Scholar 

  • Boshernitzan M, Nogueira A (2004) Generalized eigenfunctions of interval exchange maps. Ergod Theory Dyn Syst 24(3):697–705

    Article  MathSciNet  MATH  Google Scholar 

  • Bufetov A, Sinai YG, Ulcigrai C (2006) A condition for continuous spectrum of an interval exchange transformation. In: Representation theory, dynamical systems, and asymptotic combinatorics, American Mathematical Society Translations: Series 2, vol 217. American Mathematical Society, Providence, RI, pp 23–35

    Google Scholar 

  • Bufetov AI (2014) Limit theorems for translation flows. Ann Math 179(2):431–499

    Article  MathSciNet  MATH  Google Scholar 

  • Bufetov AI, Solomyak B (2018) The Hölder property for the spectrum of translation flows in genus two. Israel J Math 223(1):205–259

    Article  MathSciNet  MATH  Google Scholar 

  • Bufetov AI, Solomyak B (2020) A spectral cocycle for substitution systems and translation flows. J Anal Math 141(1):165–205

    Article  MathSciNet  MATH  Google Scholar 

  • Bufetov AI, Solomyak B (2021) Hölder regularity for the spectrum of translation flows. J Éc Polytech Math 8:279–310

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J (2012) Every ergodic transformation is disjoint from almost every interval exchange transformation. Ann Math (2) 175(1):237–253

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J, Eskin A (2021) Self-joinings for 3-IETs. J Eur Math Soc (JEMS) 23(8):2707–2731

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J, Frączek K, Kanigowski A, Ulcigrai C (2021) Singularity of the spectrum for smooth area-preserving flows in genus two and translation surfaces well approximated by cylinders. Commun Math Phys 381(3):1369–1407

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J, Masur H (2015) There exists an interval exchange with a non-ergodic generic measure. J Mod Dyn 9:289–304

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J, Masur H (2020) The set of non-uniquely ergodic d-IETs has Hausdorff codimension 1/2. Invent Math 222(3):749–832

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J, Robertson D (2019) Ergodicity of skew products over linearly recurrent IETs. J Lond Math Soc 100(1):223–248

    Article  MathSciNet  MATH  Google Scholar 

  • Chaika J, Weiss B (2022) The horocycle flow on the moduli space of translation surfaces, ICM 2022 Proceedings. EMS Press

    Google Scholar 

  • Chaika J, Wright A (2019) A smooth mixing flow on a surface with nondegenerate fixed points. J Am Math Soc 32(1):81–117

    Article  MathSciNet  MATH  Google Scholar 

  • Cheung Y (2003) Hausdorff dimension of the set of nonergodic directions. Ann Math 158(2):661–678. With an appendix by M. Boshernitzan

    Article  MathSciNet  MATH  Google Scholar 

  • Cheung Y, Hubert P, Masur H (2011) Dichotomy for the Hausdorff dimension of the set of nonergodic directions. Invent Math 183(2):337–383

    Article  MathSciNet  MATH  Google Scholar 

  • Conze J-P, Frączek K (2011) Cocycles over interval exchange transformations and multivalued Hamiltonian flows. Adv Math 226(5):4373–4428

    Article  MathSciNet  MATH  Google Scholar 

  • Danilenko AI, Ryzhikov VV (2012) On self-similarities of ergodic flows. Proc Lond Math Soc (3) 104(3):431–454

    Article  MathSciNet  MATH  Google Scholar 

  • de la Rue T (2020) Joinings in ergodic theory. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–20

    Google Scholar 

  • del Junco A (1981) Disjointness of measure-preserving transformations, minimal self-joinings and category. In: Ergodic theory and dynamical systems, I (College Park, Md., 1979–80), Progress in Mathematics, vol 10. Birkhäuser, Boston, MA, pp 81–89

    Google Scholar 

  • del Junco A (1983) A family of counterexamples in ergodic theory. Israel J Math 44(2):160–188

    Article  MathSciNet  MATH  Google Scholar 

  • Dong C, Kanigowski A (2020) Rigidity of a class of smooth singular flows on \( {\mathbb{T}}^2 \) J Mod Dyn 16:37–57

    Google Scholar 

  • Fayad B (2001) Polynomial decay of correlations for a class of smooth flows on the two torus. Bull Soc Math France 129(4):487–503

    Article  MathSciNet  MATH  Google Scholar 

  • Fayad B, Forni G, Kanigowski A (2021) Lebesgue spectrum of countable multiplicity for conservative flows on the torus. J Am Math Soc 34(3):747–813

    Article  MathSciNet  MATH  Google Scholar 

  • Fayad B, Kanigowski A (2016) Multiple mixing for a class of conservative surface flows. Invent Math 203(2):555–614

    Article  MathSciNet  MATH  Google Scholar 

  • Fayad B, Krikorian R (2018) Some questions around quasiperiodic dynamics. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018, Invited lectures, vol III. World Sci. Publ, Hackensack, NJ, pp 1909–1932

    Google Scholar 

  • Fayad B, Lemańczyk M (2006) On the ergodicity of cylindrical transformations given by the logarithm. Mosc Math J 6(4):657–672, 771–772

    Article  MathSciNet  MATH  Google Scholar 

  • Fayad BR (2002) Analytic mixing reparametrizations of irrational flows. Ergod Theory Dyn Syst 22(2):437–468

    Article  MathSciNet  MATH  Google Scholar 

  • Ferenczi S, Holton C, Zamboni LQ (2005) Joinings of three-interval exchange transformations. Ergod Theory Dyn Syst 25(2):483–502

    Article  MathSciNet  MATH  Google Scholar 

  • Ferenczi S, Zamboni LQ (2011) Eigenvalues and simplicity of interval exchange transformations. Ann Sci Éc Norm Supér (4) 44(3):361–392

    Article  MathSciNet  MATH  Google Scholar 

  • Forni G (1997) Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus. Ann Math 146(2):295–344

    Article  MathSciNet  MATH  Google Scholar 

  • Forni G (2002) Deviation of ergodic averages for area-preserving flows on surfaces of higher genus. Ann Math 155(1):1–103

    Article  MathSciNet  MATH  Google Scholar 

  • Forni G (2021) Sobolev regularity of solutions of the cohomological equation. Ergod Theory Dyn Syst 41(3):685–789

    Article  MathSciNet  MATH  Google Scholar 

  • Forni G (2022) Twisted translation flows and effective weak mixing. J Eur Math Soc (JEMS) 24(2022), no. 12, 4225–4276

    Google Scholar 

  • Forni G, Marmi S, Matheus C (2017) Cohomological equation and local conjugacy class of diophantine interval exchange maps to appear in Proc. Amer. Math. Soc., https://doi.org/10.1090/proc/14538

  • Forni G, Matheus C (2014) Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. J Mod Dyn 8(3–4):271–436

    MathSciNet  MATH  Google Scholar 

  • Forni G, Ulcigrai C (2012) Time-changes of horocycle flows. J Mod Dyn 6(2):251–273

    Article  MathSciNet  MATH  Google Scholar 

  • Fox RH, Kershner RB (1936) Concerning the transitive properties of geodesics on a rational polyhedron. Duke Math J 2(1):147–150

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2003) On symmetric logarithm and some old examples in smooth ergodic theory. Fundam Math 180(3):241–255

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2004) A class of special flows over irrational rotations which is disjoint from mixing flows. Ergod Theory Dyn Syst 24:1083–1095

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2005) On disjointness properties of some smooth flows. Fundam Math 185(2):117–142

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2006) On mild mixing of special flows over irrational rotations under piecewise smooth functions. Ergod Theory Dyn Syst 26(3):719–738

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2010) Ratner’s property and mild mixing for special flows over two-dimensional rotations. J Mod Dyn 4:609–635

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K (2009) Density of mild mixing property for vertical flows of abelian differentials. Proc Am Math Soc 137(12):4229–4142

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Hubert P (2018) Recurrence and non-ergodicity in generalized wind-tree models. Math Nachr 291(11–12):1686–1711

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Kim M (2021) New phenomena in deviation of Birkhoff integrals for locally Hamiltonian flows. ar**v:2112.13030

    Google Scholar 

  • Frączek K, Kułaga-Przymus J, Lemańczyk M (2014) Non-reversibility and self-joinings of higher orders for ergodic flows. J Anal Math 122:163–227

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2009a) On the self-similarity problem for ergodic flows. Proc Lond Math Soc 99(3):658–696

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M (2009b) Smooth singular flows in dimension 2 with the minimal self-joining property. Monatsh Math 156(1):11–45

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Lemańczyk M, Lesigne E (2007) Mild mixing property for special flows under piecewise constant functions. Discrete Contin Dyn Syst 19(4):691–710

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Ulcigrai C (2012) Ergodic properties of infinite extensions of area-preserving flows. Math Ann 354(4):1289–1367

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Ulcigrai C (2014) Non-ergodic ℤ-periodic billiards and infinite translation surfaces. Invent Math 197(2):241–298

    Article  MathSciNet  MATH  Google Scholar 

  • Frączek K, Ulcigrai C (2021) On the asymptotic growth of Birkhoff integrals for locally Hamiltonian flows and ergodicity of their extensions. ar**v:2112.05939

    Google Scholar 

  • Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theory 1:1–49

    Article  MathSciNet  MATH  Google Scholar 

  • Ghazouani S (2021) Local rigidity for periodic generalised interval exchange transformations. Invent Math 226(2):467–520

    Article  MathSciNet  MATH  Google Scholar 

  • Ghazouani S, Ulcigrai C (2021) A priori bounds for GIETs, affine shadows and rigidity of foliations in genus 2. Preprint ar**v:2106.03529

    Google Scholar 

  • Halmos PR (1960) Lectures on ergodic theory. Chelsea Publishing Co., New York

    MATH  Google Scholar 

  • Hmili H (2010) Non topologically weakly mixing interval exchanges. Discrete Contin Dyn Syst 27(3):1079–1091

    Article  MathSciNet  MATH  Google Scholar 

  • Hooper WP (2015) The invariant measures of some infinite interval exchange maps. Geom Topol 19(4):1895–2038

    Article  MathSciNet  MATH  Google Scholar 

  • Host B (1991) Mixing of all orders and pairwise independent joinings of systems with singular spectrum. Israel J Math 76(3):289–298

    Article  MathSciNet  MATH  Google Scholar 

  • Hubert P, Weiss B (2013) Ergodicity for infinite periodic translation surfaces. Compos Math 149(8):1364–1380

    Article  MathSciNet  MATH  Google Scholar 

  • Kanigowski A (2015) Ratner’s property for special flows over irrational rotations under functions of bounded variation. Ergod Theory Dyn Syst 35(3):915–934

    Article  MathSciNet  MATH  Google Scholar 

  • Kanigowski A, Kułaga-Przymus J (2016) Ratner’s property and mild mixing for smooth flows on surfaces. Ergod Theory Dyn Syst 36(8):2512–2537

    Article  MathSciNet  MATH  Google Scholar 

  • Kanigowski A, Kułaga-Przymus J, Ulcigrai C (2019) Multiple mixing and parabolic divergence in smooth area-preserving flows on higher genus surfaces. J Eur Math Soc (JEMS) 21(12):3797–3855

    Article  MathSciNet  MATH  Google Scholar 

  • Kanigowski A, Lemańczyk M (2020) Spectral theory of dynamical systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–40

    MATH  Google Scholar 

  • Kanigowski A, Lemańczyk M, Ulcigrai C (2020) On disjointness properties of some parabolic flows. Invent Math 221(1):1–111

    Article  MathSciNet  MATH  Google Scholar 

  • Katok A (2001) Cocycles, cohomology and combinatorial constructions in ergodic theory. In: Smooth ergodic theory and its applications (Seattle, WA, 1999), Proceedings of Symposia in Pure Mathematics, vol 69. American Mathematical Society, Providence, RI, pp 107–173. In collaboration with E. A. Robinson, Jr

    Google Scholar 

  • Katok A, Thouvenot J-P (2006) Spectral properties and combinatorial constructions in ergodic theory. In: Handbook of dynamical systems, vol 1B. Elsevier B. V., Amsterdam, pp 649–743

    Google Scholar 

  • Katok AB (1973) Invariant measures of flows on oriented surfaces. Sov Math Dokl 14:1104–1108

    MATH  Google Scholar 

  • Katok AB (1980) Interval exchange transformations and some special flows are not mixing. Israel J Math 35(4):301–310

    Article  MathSciNet  MATH  Google Scholar 

  • Katok AB, Stepin AM (1966) Approximation of ergodic dynamical systems by periodic transformations. Dokl Akad Nauk SSSR 171:1268–1271

    MathSciNet  MATH  Google Scholar 

  • Katok AB, Stepin AM (1967) Approximations in ergodic theory. Uspehi Mat Nauk 137(5):81–106

    MathSciNet  MATH  Google Scholar 

  • Keane M (1975) Interval exchange transformations. Math Z 141:25–31

    Article  MathSciNet  MATH  Google Scholar 

  • Keane M (1977) Non-ergodic interval exchange transformations. Israel J Math 26(2):188–196

    Article  MathSciNet  MATH  Google Scholar 

  • Kerckhoff S, Masur H, Smillie J (1986) Ergodicity of billiard flows and quadratic differentials. Ann Math (2) 124((2):293–311

    Article  MathSciNet  MATH  Google Scholar 

  • Keynes HB, Newton D (1976) A “minimal”, nonuniquely ergodic interval exchange transformation. Math Z 148(2):101–105

    Article  MathSciNet  MATH  Google Scholar 

  • Kočergin AV (1972) The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus. Dokl Akad Nauk SSSR 205:512–518. (Translated in: Sov Math Dokl 13:949–952, 1972)

    MathSciNet  Google Scholar 

  • Kočergin AV (1975) Mixing in special flows over a shifting of segments and in smooth flows on surfaces. Mat Sb 96(138):471–502

    MathSciNet  MATH  Google Scholar 

  • Kochergin AV (2004) Some generalizations of theorems on mixing flows with nondegenerate saddles on a two-dimensional torus. Mat Sb 195(9):19–36

    MathSciNet  MATH  Google Scholar 

  • Kochergin AV (2007) Nondegenerate saddles, and absence of mixing. II. Mat Zametki 81(1):145–148

    MathSciNet  Google Scholar 

  • Kontsevich M (1997) Lyapunov exponents and Hodge theory. In: The mathematical beauty of physics (Saclay, 1996), Advanced Series in Mathematical Physics, vol 24. World Scientific Publishing, River Edge, NJ, pp 318–332

    Google Scholar 

  • Kontsevich M, Zorich A (1997) Lyapunov exponents and Hodge theory. ar**v:hep-th/9701164

    Google Scholar 

  • Kočergin AV (1976) Nondegenerate saddles, and the absence of mixing. Mat Zametki 19(3):453–468

    MathSciNet  Google Scholar 

  • Kułaga J (2012) On the self-similarity problem for smooth flows on orientable surfaces. Ergod Theory Dyn Syst 32(5):1615–1660

    Article  MathSciNet  MATH  Google Scholar 

  • Kułaga-Przymus J, Lemańczyk M (2020) Sarnak’s conjecture from the ergodic theory point of view. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–19

    Google Scholar 

  • Lanneau E, Marmi S, Skripchenko A (2021) Cohomological equations for linear involutions. Dyn Syst 36(2):292–304

    Article  MathSciNet  MATH  Google Scholar 

  • Lemańczyk M (2000) Sur l’absence de mélange pour des flots spéciaux au-dessus d’une rotation irrationnelle. Colloq Math 84–85:29–41

    Article  MATH  Google Scholar 

  • Levitt G (1983) Feuillettages des surfaces. Thèse

    Google Scholar 

  • Málaga Sabogal A, Troubetzkoy S (2016) Ergodicity of the Ehrenfest wind-tree model. C R Math Acad Sci Paris 354(10):1032–1036

    Article  MathSciNet  MATH  Google Scholar 

  • Marmi S, Moussa P, Yoccoz J-C (2005) The cohomological equation for Roth-type interval exchange maps. J Am Math Soc 18(4):823–872. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Marmi S, Moussa P, Yoccoz J-C (2012) Linearization of generalized interval exchange maps. Ann Math (2) 176(3):1583–1646

    Article  MathSciNet  MATH  Google Scholar 

  • Marmi S, Ulcigrai C, Yoccoz J-C (2020) On Roth type conditions, duality and central Birkhoff sums for I.E.M. Astérisque, (416, Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz.II), pp. 65–132

    Google Scholar 

  • Marmi S, Yoccoz J-C (2016) Hölder regularity of the solutions of the cohomological equation for Roth type interval exchange maps. Comm Math Phys 344(1):117–139

    Article  MathSciNet  MATH  Google Scholar 

  • Masur H (1982) Interval exchange transformations and measured foliations. Ann Math 115:169–200

    Article  MathSciNet  MATH  Google Scholar 

  • Masur H (1992) Hausdorff dimension of the set of nonergodic foliations of a quadratic differential. Duke Math J 66(3):387–442

    Article  MathSciNet  MATH  Google Scholar 

  • Masur H, Smillie J (1991) Hausdorff dimension of sets of nonergodic measured foliations. Ann Math (2) 134(3):455–543

    Article  MathSciNet  MATH  Google Scholar 

  • Masur H, Tabachnikov S (2002) Rational billiards and flat structures. In: Handbook of dynamical systems, vol 1A. North-Holland, Amsterdam, pp 1015–1089

    Google Scholar 

  • Mayer A (1943) Trajectories on the closed orientable surfaces. Rec Math [Mat Sbornik] NS 12(54):71–84

    MathSciNet  MATH  Google Scholar 

  • McMullen CT (2020) Teichmüller dynamics and unique ergodicity via currents and Hodge theory. J Reine Angew Math 768:39–54

    Article  MathSciNet  MATH  Google Scholar 

  • Nikolaev I, Zhuzhoma E (1999) Flows on 2-dimensional manifolds. In: Lecture notes in mathematics, vol 1705. Springer

    Google Scholar 

  • Nogueira A, Rudolph D (1997) Topological weak-mixing of interval exchange maps. Ergod Theory Dyn Syst 17(5):1183–1209

    Article  MathSciNet  MATH  Google Scholar 

  • Novikov SP (1982) The Hamiltonian formalism and a multivalued analogue of Morse theory. (Russian) Uspekhi Matematicheskikh Nauk 37(5):3–49. (Translated in: Russ Math Surv 37(5):1–56, 1982)

    MathSciNet  Google Scholar 

  • Oseledec VI (1966) The spectrum of ergodic automorphisms. Dokl Akad Nauk SSSR 168:1009–1011

    MathSciNet  Google Scholar 

  • Poincaré H (1987) Les méthodes nouvelles de la mécanique céleste. In: Les Grands Classiques Gauthier-Villars, Librairie Scientifique et Technique Albert Blanchard, Paris

    Google Scholar 

  • Quas A (2017) Ergodicity and mixing properties. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 1–20

    Google Scholar 

  • Ralston D, Troubetzkoy S (2017) Residual generic ergodicity of periodic group extensions over translation surfaces. Geom Dedicata 187:219–239

    Article  MathSciNet  MATH  Google Scholar 

  • Ravotti D (2017) Quantitative mixing for locally Hamiltonian flows with saddle loops on compact surfaces. Ann Henri Poincaré 18(12):3815–3861

    Article  MathSciNet  MATH  Google Scholar 

  • Robertson D (2019) Mild mixing of certain interval-exchange transformations. Ergod Theory Dyn Syst 39(1):248–256

    Article  MathSciNet  MATH  Google Scholar 

  • Ryzhikov VV (1994) The absence of mixing in special flows over rearrangements of segments. Mat Zametki 55(6):146–149. (Translated in: Math Notes 55(5–6):648–650, 1994)

    MathSciNet  MATH  Google Scholar 

  • Ryzhikov VV, Tuveno Z-P (2006) Disjointness, divisibility, and quasi-simplicity of measure-preserving actions. Funktsional Anal i Prilozhen 40(3):85–89

    Article  MathSciNet  Google Scholar 

  • Sataev EA (1975) The number of invariant measures for flows on orientable surfaces. Izv Akad Nauk SSSR Ser Mat 39(4):860–878

    MathSciNet  Google Scholar 

  • Scheglov D (2009) Absence of mixing for smooth flows on genus two surfaces. J Mod Dyn 3(1):13–34

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt K (2002) Dispersing cocycles and mixing flows under functions. Fundam Math 173(2):191–199

    Article  MathSciNet  MATH  Google Scholar 

  • Sinai YG, Khanin KM (1992) Mixing for some classes of special flows over rotations of the circle. Funktsional’nyi Analiz i Ego Prilozheniya 26(3):1–21. (Translated in: Funct Anal Appl 26(3)155–169, 1992)

    MathSciNet  MATH  Google Scholar 

  • Sinai YG, Ulcigrai C (2005) Weak mixing in interval exchange transformations of periodic type. Lett Math Phys 74(2):111–133

    Article  MathSciNet  MATH  Google Scholar 

  • Ulcigrai C (2022) Dynamics and ‘arithmetics’ of higher genus surface flows. EMS Press, ICM 2022 Proceedings

    Google Scholar 

  • Ulcigrai C (2007) Mixing of asymmetric logarithmic suspension flows over interval exchange transformations. Ergod Theory Dyn Syst 27(3):991–1035

    Article  MathSciNet  MATH  Google Scholar 

  • Ulcigrai C (2009) Weak mixing for logarithmic flows over interval exchange transformations. J Mod Dyn 3(1):35–49

    Article  MathSciNet  MATH  Google Scholar 

  • Ulcigrai C (2011) Absence of mixing in area-preserving flows on surfaces. Ann Math (2) 173(3):1743–1778

    Article  MathSciNet  MATH  Google Scholar 

  • Ulcigrai C (2021) Slow chaos in surface flows. Boll Unione Mat Ital 14(1):231–255

    Article  MathSciNet  MATH  Google Scholar 

  • Veech WA (1969) Strict ergodicity in zero dimensional dynamical systems and the Kronecker-Weyl theorem mod 2. Trans Am Math Soc 140:1–33

    MathSciNet  MATH  Google Scholar 

  • Veech WA (1982a) A criterion for a process to be prime. Monatsh Math 94(4):335–341

    Article  MathSciNet  MATH  Google Scholar 

  • Veech WA (1982b) Gauss measures for transformations on the space of interval exchange maps. Ann Math 115:201–242

    Article  MathSciNet  MATH  Google Scholar 

  • Veech WA (1984) The metric theory of interval exchange transformations I. generic spectral properties. Am J Math 107(6):1331–1359

    Article  MathSciNet  MATH  Google Scholar 

  • Viana M (n.d.) Dynamics of interval exchange transformations and Teichmüller flows. Available from http://w3.impa.br/viana. Lecture Notes

  • von Neumann J (1932) Zur Operatorenmethode in der klassischen Mechanik. Ann Math (2) 33(3):587–642

    Article  MathSciNet  MATH  Google Scholar 

  • Yoccoz J-C (2010) Interval exchange maps and translation surfaces. In: Homogeneous flows, moduli spaces and arithmetic, Clay Mathematics Proceedings, vol 10. American Mathematical Society, Providence, RI, pp 1–69

    Google Scholar 

  • Zemljakov AN, Katok AB (1975) Topological transitivity of billiards in polygons. Mat Zametki 18(2):291–300

    MathSciNet  Google Scholar 

  • Zorich A (1984) S. P. Novikov’s problem of the semiclassical motion of an electron in a homogeneous magnetic field that is close to rational. Uspekhi Mat Nauk 39(5(239)):235–236

    MathSciNet  MATH  Google Scholar 

  • Zorich A (1997) Deviation for interval exchange transformations. Ergod Theory Dyn Syst 17(6):1477–1499

    Article  MathSciNet  MATH  Google Scholar 

  • Zorich A (1999) How do the leaves of a closed 1-form wind around a surface? In: Pseudoperiodic topology, American Mathematical Society Translations: Series 2, vol 197. American Mathematical Society, Providence, RI, pp 135–178

    Google Scholar 

  • Zorich A (2006) Flat surfaces. In: Frontiers in number theory, physics, and geometry, I. Springer, Berlin, pp 437–583

    Google Scholar 

Download references

Acknowledgments

K. F. acknowledges the supporf of the Narodowe Centrum Nauki Grant number 2017/27/B/ST1/00078. C. U. is part of SwissMAP (The Mathematics of Physics National Centre for Compentence in Research) and is currently supported by a SNSF (Swiss National Science Foundation) Grant number 200021_188617/1. Both are acknowledged for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinna Ulcigrai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Frączek, K., Ulcigrai, C. (2023). Ergodic and Spectral Theory of Area-Preserving Flows on Surfaces. In: Silva, C.E., Danilenko, A.I. (eds) Ergodic Theory. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-2388-6_775

Download citation

Publish with us

Policies and ethics

Navigation