Log in

The Hölder property for the spectrum of translation flows in genus two

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

The paper is devoted to generic translation flows corresponding to Abelian differentials with one zero of order two on flat surfaces of genus two. These flows are weakly mixing by the Avila–Forni theorem. Our main result gives first quantitative estimates on their spectrum, establishing the Hölder property for the spectral measures of Lipschitz functions. The proof proceeds via uniform estimates of twisted Birkhoff integrals in the symbolic framework of random Markov compacta and arguments of Diophantine nature in the spirit of Salem, Erdős and Kahane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. J. S. Athreya, Quantitative recurrence and large deviations for Teichmuller geodesic flow, Geom. Dedicata 119 (2006), 121᾿40.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Avila and V. Delecroix, Weak mixing directions in non-arithmetic Veech surfaces, J. Amer. Math. Soc. 29 (2016), 1167᾿208.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Avila and G. Forni, Weak mixing for interval exchange transformations and translation flows, Ann. of Math. (2) 165 (2007), 637᾿64.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow, Publ. Math. Inst. Hautes Études Sci. (2006), 143᾿11.

    Google Scholar 

  5. A. Avila and M. Viana, Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math. 198 (2007), 1᾿6.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Barreira and Y. Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its Applications, Vol. 115, Cambridge University Press, Cambridge, 2007, Dynamics of systems with nonzero Lyapunov exponents.

  7. V. Berthé, W. Steiner and J. M. Thuswaldner, Geometry, dynamics, and arithmetic of s-adic shifts, ar**v:1410.0331, preprint (2014).

    Google Scholar 

  8. A. I. Bufetov, Limit theorems for special flows over Vershik transformations, Uspekhi Mat. Nauk 68 (2013), 3᾿0.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. I. Bufetov and B. M. Gurevich, Existence and uniqueness of a measure with maximal entropy for the Teichmüller flow on the moduli space of abelian differentials, Mat. Sb. 202 (2011), 3᾿2.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. I. Bufetov, Decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations and the central limit theorem for the Teichm üller flow on the moduli space of abelian differentials, J. Amer.Math. Soc. 19 (2006), 579᾿23.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. I. Bufetov, Limit theorems for translation flows, Ann. of Math. (2) 179 (2014), 431᾿99.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. I. Bufetov and B. Solomyak, On the modulus of continuity for spectral measures in substitution dynamics, Adv. Math. 260 (2014), 84᾿29.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974᾿76.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Erdös, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62 (1940), 180᾿86.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chichester, 1997.

    MATH  Google Scholar 

  16. S. Ferenczi, Rank and symbolic complexity, Ergodic Theory Dynam. Systems 16 (1996), 663᾿82.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, Vol. 1794, Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.

  18. G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math. (2) 155 (2002), 1᾿03.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Forni and C. Ulcigrai, Time-changes of horocycle flows, J. Mod. Dyn. 6 (2012), 251᾿73.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Furstenberg, Stationary processes and prediction theory, Annals of Mathematics Studies, No. 44, Princeton University Press, Princeton, N.J., 1960.

  21. M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2) 180 (2014), 773᾿22.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Ito, A construction of transversal flows for maximal Markov automorphisms, Tokyo J. Math. 1 (1978), 305᾿24.

    Article  MathSciNet  MATH  Google Scholar 

  23. J.-P. Kahane, Sur la distribution de certaines séries aléatoires, (1971), 119᾿22.

    MATH  Google Scholar 

  24. A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math. 35 (1980), 301᾿10.

    Article  MathSciNet  MATH  Google Scholar 

  25. H. Masur, Interval exchange transformations and measured foliations, Ann. ofMath. (2) 115 (1982), 169᾿00.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179᾿10.

    MathSciNet  Google Scholar 

  27. R. Salem, A remarkable class of algebraic integers. Proof of a conjecture of Vijayaraghavan, Duke Math. J. 11 (1944), 103᾿08.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Salem, Algebraic numbers and Fourier analysis, D. C. Heath and Co., Boston, Mass., 1963.

    MATH  Google Scholar 

  29. P. Shmerkin, On the exceptional set for absolute continuity of Bernoulli convolutions, Geom. Funct. Anal. 24 (2014), 946᾿58.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Solomyak, On the spectral theory of adic transformations, in Representation theory and dynamical systems, Adv. Soviet Math., Vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 217᾿30.

    MathSciNet  MATH  Google Scholar 

  31. P. Varjú, Absolute continuity of bernoulli convolutions for algebraic parameters, ar**v:1602.00261, preprint (2016).

  32. W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2) 115 (1982), 201᾿42.

    Article  MathSciNet  MATH  Google Scholar 

  33. W. A. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties, Amer. J. Math. 106 (1984), 1331᾿359.

    Article  MathSciNet  MATH  Google Scholar 

  34. W. A. Veech, Decoding Rauzy induction: Bufetov’s question, Mosc. Math. J. 10 (2010), 647᾿57, 663.

    MathSciNet  MATH  Google Scholar 

  35. A. M. Vershik, A theorem on Markov periodic approximation in ergodic theory, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115 (1982), 72᾿2, 306, Boundary value problems of mathematical physics and related questions in the theory of functions, 14.

    MathSciNet  MATH  Google Scholar 

  36. A. M. Vershik, The adic realizations of the ergodic actions with the homeomorphisms of the Markov compact and the ordered Bratteli diagrams, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 223 (1995), 120᾿6, 338.

    MATH  Google Scholar 

  37. A. M. Vershik and A. N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, in Representation theory and dynamical systems, Adv. Soviet Math., Vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 185᾿04.

    MATH  Google Scholar 

  38. M. Viana, Interval exchange transformations and teichmüller flows, IMPA, preprint, 2008.

    Google Scholar 

  39. A. Zorich, Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble) 46 (1996), 325᾿70.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Bufetov.

Additional information

To the memory of William Austin Veech (1938–2016)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bufetov, A.I., Solomyak, B. The Hölder property for the spectrum of translation flows in genus two. Isr. J. Math. 223, 205–259 (2018). https://doi.org/10.1007/s11856-017-1614-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-017-1614-8

Navigation