Part of the book series: Neuromethods ((NM,volume 167))

Abstract

The 6-hertz (6 Hz) model is an effective tool to screen drugs for psychomotor seizures and/or treatment-resistant focal seizures. It is known to identify the drugs or molecules acting via different mechanisms, unlike the traditional models. Seizure is induced by corneal stimulation (6 Hz, 0.2 ms for 3 s duration) using electroconvulsometer. The characteristic features seen in rodents are stun position and minimal clonic phase, followed by stereotyped behavior observed for 120 s, at stimulus of different intensities like 22, 32, or 44 mA. The animals are considered as protected if no stereotype behavior is observed and the animal resumes normal exploratory behavior within 10 s. Despite being effective in identifying the antiseizure potential of certain drugs possessing newer mechanisms, the model cannot correlate the neuronal and pathophysiological adaptations occurring in chronic cases of epilepsy, which is considered as its drawback.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Protocol
EUR 44.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Swinyard EA (1972) Electrically induced seizures. In: Purpura DP, Penry JK, Tower DB, Woodbury DM, Walter RD (eds) Experimental models of epilepsy: a manual for the laboratory worker. Raven Press, New York, pp 433–458

    Google Scholar 

  2. Brown WC, Schiffman DO, Swinyard EA, Goodman LS (1953) Comparative assay of antiepileptic drugs by “psychomotor” seizure test and minimal electroshock threshold test. J Pharmacol Exp Ther 107(3):273–283

    CAS  PubMed  Google Scholar 

  3. Barton ME, Klein BD, Wolf HH, White HS (2001) Pharmacological characterization of the 6Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 47(3):217–227

    Article  CAS  Google Scholar 

  4. Metcalf CS, West PJ, Thomson KE, Edwards SF, Smith MD, White HS, Wilcox KS (2017) Development and pharmacologic characterization of the rat 6 Hz model of partial seizures. Epilepsia 58(6):1073–1084

    Article  CAS  Google Scholar 

  5. White HS, Bender AS, Swinyard EA (1988) Effect of the selective N-methyl-D-aspartate receptor agonist 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid on [3H] flunitrazepam binding. Eur J Pharmacol 147(1):149–151

    Article  CAS  Google Scholar 

  6. Loscher W, Honack D (1993) Profile of UCB L059, a novel anticonvulsant drug, in models of partial and generalized epilepsy in mice and rats. Eur J Pharmacol 232:147–158

    Article  CAS  Google Scholar 

  7. Klitgaard H, Matagne A, Gobert J, Wulfert E (1996) Levetiracetam (UCB L059) prevents limbic seizures induced by pilocarpine and kainic acid in rats. Epilepsia 37(S5):118

    Google Scholar 

  8. Leclercq K, Kaminski RM (2015) Status epilepticus induction has prolonged effects on the efficacy of antiepileptic drugs in the 6-Hz seizure model. Epilepsy Behav 49:55–60

    Article  Google Scholar 

  9. Gower AJ, Noyer M, Verloes R, Gobert J, Wülfert E (1992) UCB L059, a novel anti-convulsant drug: pharmacological profile in animals. Eur J Pharmacol 222(2–3):193–203

    Article  CAS  Google Scholar 

  10. Leclercq K, Matagne A, Provins L, Klitgaard H, Kaminski RM (2020) Pharmacological profile of the novel antiepileptic drug candidate padsevonil: characterization in rodent seizure and epilepsy models. J Pharmacol Exp Ther 372(1):11–20

    Article  CAS  Google Scholar 

  11. Kaminski RM, Livingood MR, Rogawski MA (2004) Allopregnanolone analogs that positively modulate GABAA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice. Epilepsia 45(7):864–867

    Article  CAS  Google Scholar 

  12. Wojda E, Wlaz A, Patsalos PN, Luszczki JJ (2009) Isobolographic characterization of interactions of levetiracetam with the various antiepileptic drugs in the mouse 6 Hz psychomotor seizure model. Epilepsy Res 86(2–3):163–174

    Article  CAS  Google Scholar 

  13. Jahan K, Pillai KK, Vohora D (2017) Parachlorophenylalanine-induced 5-HT depletion alters behavioral and brain neurotransmitters levels in 6-Hz psychomotor seizure model in mice. Fundam Clin Pharmacol 31(4):403–410

    Article  CAS  Google Scholar 

  14. Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  Google Scholar 

  15. Hartman AL, Lyle M, Rogawski MA, Gasior M (2008) Efficacy of the ketogenic diet in the 6-Hz seizure test. Epilepsia 49(2):334–339

    Article  Google Scholar 

  16. Bankstahl M, Bankstahl JP, Löscher W (2013) Pilocarpine-induced epilepsy in mice alters seizure thresholds and the efficacy of antiepileptic drugs in the 6-hertz psychomotor seizure model. Epilepsy Res 107(3):205–216

    Article  CAS  Google Scholar 

  17. Rowley NM, White HS (2010) Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: correlation with other seizure and epilepsy models. Epilepsy Res 92(2–3):163–169

    Article  CAS  Google Scholar 

  18. Walrave L, Maes K, Coppens J, Bentea E, Van Eeckhaut A, Massie A, Van Liefferinge J, Smolders I (2015) Validation of the 6 Hz refractory seizure mouse model for intracerebroventricularly administered compounds. Epilepsy Res 115:67–72

    Article  Google Scholar 

  19. Freeman J, Veggiotti P, Lanzi G, Tagliabue A, Perucca E (2006) The ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Res 68(2):145–180

    Article  CAS  Google Scholar 

  20. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7(6):500–506

    Article  Google Scholar 

  21. Giordano C, Marchiò M, Timofeeva E, Biagini G (2014) Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 29(5):63

    Google Scholar 

  22. Lucchi C, Marchiò M, Caramaschi E, Giordano C, Giordano R, Guerra A, Biagini G (2017) Electrographic changes accompanying recurrent seizures under ketogenic diet treatment. Pharmaceuticals 10(4):82

    Article  Google Scholar 

  23. Leclercq K, Matagne A, Kaminski RM (2014) Low potency and limited efficacy of antiepileptic drugs in the mouse 6 Hz corneal kindling model. Epilepsy Res 108(4):675–683

    Article  CAS  Google Scholar 

  24. Albertini G, Walrave L, Demuyser T, Massie A, De Bundel D, Smolders I (2018) 6Hz corneal kindling in mice triggers neurobehavioral comorbidities accompanied by relevant changes in c-Fos immunoreactivity throughout the brain. Epilepsia 59(1):67–78

    Article  CAS  Google Scholar 

  25. Giordano C, Vinet J, Curia G, Biagini G (2015) Repeated 6-Hz corneal stimulation progressively increases FosB/ΔFosB levels in the lateral amygdala and induces seizure generalization to the hippocampus. PLoS One 10(11):e0141221

    Article  Google Scholar 

  26. Jahan K, Pillai KK, Vohora D (2019) Serotonergic mechanisms in the 6-Hz psychomotor seizures in mice. Hum Exp Toxicol 38(3):336–346

    Article  CAS  Google Scholar 

  27. Jahan K, Pillai KK, Vohora D (2018) DSP-4 induced depletion of brain noradrenaline and increased 6-hertz psychomotor seizure susceptibility in mice is prevented by sodium valproate. Brain Res Bull 142:263–269

    Article  CAS  Google Scholar 

  28. Vohora D, Pal SN, Pillai KK (2001) Histamine and selective H3-receptor ligands: a possible role in the mechanism and management of epilepsy. Pharmacol Biochem Behav 68(4):735–741

    Article  CAS  Google Scholar 

  29. Fujimoto Y, Funao T, Suehiro K, Takahashi R, Mori T, Nishikawa K (2015) Brain serotonin content regulates the manifestation of tramadol-induced seizures in rats: disparity between tramadol-induced seizure and serotonin syndrome. Anesthesiology 122(1):178–189

    Article  CAS  Google Scholar 

  30. Cumper SK, Ahle GM, Liebman LS, Kellner CH (2014) Electroconvulsive therapy (ECT) in Parkinson’s disease: ECS and dopamine enhancement. J ECT 30(2):122–124

    Article  CAS  Google Scholar 

  31. Barton ME, Peters SC, Shannon HE (2003) Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Res 56(1):17–26

    Article  CAS  Google Scholar 

  32. Nakamura J, Mine K, Yamada S (1991) Effects of anticonvulsants on the electroconvulsive threshold lowered by DA, 5-HT or GABA depletion. Kurume Med J 37(4):253–259

    Article  Google Scholar 

  33. Scherkl R, Hashem A, Frey HH (1991) Histamine in brain—its role in regulation of seizure susceptibility. Epilepsy Res 10(2–3):111–118

    Article  CAS  Google Scholar 

  34. Jobe PC, Stull RE, Geiger PF (1974) The relative significance of norepinephrine, dopamine and 5-hydroxytryptamine in electroshock seizure in the rat. Neuropharmacology 13(10–11):961–968

    Article  CAS  Google Scholar 

  35. Esneault E, Peyon G, Castagné V (2017) Efficacy of anticonvulsant substances in the 6 Hz seizure test: comparison of two rodent species. Epilepsy Res 134:9–15

    Article  CAS  Google Scholar 

  36. Metcalf CS, Huff J, Thomson KE, Johnson K, Edwards SF, Wilcox KS (2019) Evaluation of antiseizure drug efficacy and tolerability in the rat lamotrigine-resistant amygdala kindling model. Epilepsia Open 4(3):452–463

    Article  Google Scholar 

  37. Tomaciello F, Leclercq K, Kaminski RM (2016) Resveratrol lacks protective activity against acute seizures in mouse models. Neurosci Lett 632:199–203

    Article  CAS  Google Scholar 

  38. Duncan GE, Kohn H (2005) The novel antiepileptic drug lacosamide blocks behavioral and brain metabolic manifestations of seizure activity in the 6 Hz psychomotor seizure model. Epilepsy Res 67(1–2):81–87

    Article  CAS  Google Scholar 

  39. Klein P, Diaz A, Gasalla T, Whitesides J (2018) A review of the pharmacology and clinical efficacy of brivaracetam. Clin Pharmacol 10:1–22

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Razia Khanam or Divya Vohora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Khanam, R., Vohora, D. (2021). Protocol for 6 Hz Corneal Stimulation in Rodents for Refractory Seizures. In: Vohora, D. (eds) Experimental and Translational Methods to Screen Drugs Effective Against Seizures and Epilepsy. Neuromethods, vol 167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1254-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1254-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1253-8

  • Online ISBN: 978-1-0716-1254-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation