Generation and Evaluation of Bispecific Anti-TNF Antibodies Based on Single-Chain VHH Domains

  • Protocol
  • First Online:
The TNF Superfamily

Abstract

Systemic cytokine inhibition may be an effective therapeutic strategy for several autoimmune diseases. However, recent studies suggest that tissue or cell type–specific targeting of certain cytokines, including TNF, may have distinct advantages and show fewer side effects. Here we describe protocols for generating and testing bispecific cytokine inhibitors using variable domain of single-chain antibodies from Camelidae (VHH) with a focus on cell-specific TNF inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Drutskaya MS, Efimov GA, Kruglov AA, Nedospasov SA (2017) Can we design a better anti-cytokine therapy? J Leukoc Biol 102:783–790

    Article  CAS  Google Scholar 

  2. Fernandez-Ruiz M, Aguado JM (2018) Risk of infection associated with anti-TNF-alpha therapy. Expert Rev Anti-Infect Ther 16:939–956

    Article  CAS  Google Scholar 

  3. Allie N, Grivennikov SI, Keeton R et al (2013) Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep 3:1809

    Article  Google Scholar 

  4. Kroetsch JT, Levy AS, Zhang H et al (2017) Constitutive smooth muscle tumour necrosis factor regulates microvascular myogenic responsiveness and systemic blood pressure. Nat Commun 8:14805

    Article  CAS  Google Scholar 

  5. Grivennikov SI, Tumanov AV, Liepinsh DJ et al (2005) Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: protective and deleterious effects. Immunity 22:93–104

    CAS  PubMed  Google Scholar 

  6. Kruglov AA, Lampropoulou V, Fillatreau S, Nedospasov SA (2011) Pathogenic and protective functions of TNF in neuroinflammation are defined by its expression in T lymphocytes and myeloid cells. J Immunol 187:5660–5670

    Article  CAS  Google Scholar 

  7. Tumanov AV, Grivennikov SI, Kruglov AA et al (2010) Cellular source and molecular form of TNF specify its distinct functions in organization of secondary lymphoid organs. Blood 116:3456–3464

    Article  CAS  Google Scholar 

  8. Kruglov A, Drutskaya M, Schlienz D et al (2020) Contrasting contributions of TNF from distinct cellular sources in arthritis. Ann Rheum Dis. Published Online First: 12 August 2020. https://doi.org/10.1136/annrheumdis-2019-216068

  9. Efimov GA, Kruglov AA, Khlopchatnikova ZV et al (2016) Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proc Natl Acad Sci 113:3006–3011

    Article  CAS  Google Scholar 

  10. Rashidian M, Keliher EJ, Bilate AM et al (2015) Noninvasive imaging of immune responses. Proc Natl Acad Sci 112:6146–6151

    Article  CAS  Google Scholar 

  11. Nosenko MA, Atretkhany K-SN, Mokhonov VV et al (2017) VHH-based bispecific antibodies targeting cytokine production. Front Immunol 8:1073

    Article  Google Scholar 

  12. Nosenko MA, Atretkhany K-SN, Mokhonov VV et al (2019) Modulation of bioavailability of proinflammatory cytokines produced by myeloid cells. Semin Arthritis Rheum 49:S39–S42

    Article  CAS  Google Scholar 

  13. Coppieters K, Dreier T, Silence K et al (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of collagen-induced arthritis. Arthritis Rheum 54:1856–1866

    Article  CAS  Google Scholar 

  14. Hamers-Casterman C, Atarhouch T, Muyldermans S et al (1993) Naturally occurring antibodies devoid of light chains. Nature 363:446–448

    Article  CAS  Google Scholar 

  15. Arbabi Ghahroudi M, Desmyter A, Wyns L et al (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  CAS  Google Scholar 

  16. Van Der Linden R, De Geus B, Stok W et al (2000) Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. J Immunol Methods 240:185–195

    Article  Google Scholar 

  17. Saerens D, Kinne J, Bosmans E et al (2004) Single domain antibodies derived from dromedary lymph node and peripheral blood lymphocytes sensing conformational variants of prostate-specific antigen. J Biol Chem 279:51965–51972

    Article  CAS  Google Scholar 

  18. Alturki NA, Henry KA, MacKenzie CR, Arbabi-Ghahroudi M (2015) Isolation of camelid single-domain antibodies against native proteins using recombinant multivalent peptide ligands. Methods Mol Biol 1348:167–189

    Article  CAS  Google Scholar 

  19. Beirnaert E, Desmyter A, Spinelli S et al (2017) Bivalent llama single-domain antibody fragments against tumor necrosis factor have Picomolar potencies due to intramolecular interactions. Front Immunol 8:867

    Article  Google Scholar 

  20. Vasilenko EA, Gorshkova EN, Astrakhantseva IV et al (2020) The structure of myeloid cell-specific TNF inhibitors affects their biological properties. FEBS Lett. Published Online First: 31 August 2020. https://doi.org/10.1002/1873-3468.13913

  21. Olleros ML, Chavez-Galan L, Segueni N et al (2015) Control of mycobacterial infections in mice expressing human tumor necrosis factor (TNF) but not mouse TNF. Infect Immun 83:3612–3623

    Article  CAS  Google Scholar 

  22. Atretkhany KSN, Mufazalov IA, Dunst J et al (2018) Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci 115:13051–13056

    Article  CAS  Google Scholar 

  23. Meier SR, Syvanen S, Hultqvist G et al (2018) Antibody-based in vivo PET imaging detects amyloid-beta reduction in Alzheimer transgenic mice after BACE-1 inhibition. J Nucl Med 59:1885–1891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Drs. A. Kruglov and G. Efimov for advice and Russian Science Foundation (grant #19-75-30032) for financial support. Sequencing of VHH-encoding constructs was performed using the equipment of EIMB RAS ‘Genome’ center (http://www.eimb.ru/ru1/ckp/ccu_genome_c.php).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nosenko, M.A. et al. (2021). Generation and Evaluation of Bispecific Anti-TNF Antibodies Based on Single-Chain VHH Domains. In: Bayry, J. (eds) The TNF Superfamily. Methods in Molecular Biology, vol 2248. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1130-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1130-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1129-6

  • Online ISBN: 978-1-0716-1130-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation